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Abstract 

The number of people requiring an organ transplant in the United States has 

increased considerably over the past 25 years, but the number of organ donations has 

stagnated; over 8,000 people now die annually while awaiting a transplant or become too 

sick to receive one.  Tissue engineering (TE), the design and production of artificial 

tissues and organs in vitro, has been proposed to alleviate this problem.  Though synthetic 

polymers offer tunable mechanical and biochemical properties, natural biomaterials have 

recently garnered attention in TE for their high degree of biocompatibility and ability to 

direct cell proliferation and constructive tissue remodeling. Yet scaffold processing 

remains challenging and a need for novel treatment and fabrication methods still exists. 

One underexplored method for creating TE scaffolds is treatment with 

supercritical fluids (SCFs).  SCFs are appealing for treating biomaterials because of their 

desirable solvent properties; liquid-like densities and gas-like viscosities allow 

supercritical fluids to wet and penetrate matrices easily without damaging surface tension 

effects.  Supercritical carbon dioxide (scCO2) is of particular interest.  scCO2 is a non-

toxic, non-flammable substance that is relatively inert and can be used to process 

biomaterials at physiologic temperatures and mild pressures.  scCO2 treatment avoids 

organic solvents, does not leave cytotoxic residue, and has already been utilized in 

similar biomedical applications, including sterilization, pasteurization, biomolecule 

extraction, and removal of endotoxins, bioburden, and allergenic proteins.   
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Supercritical CO2 has been used in foaming of synthetic polymer scaffolds, but it 

is almost completely unexplored in treatment of natural biomaterials for TE.  In this 

dissertation, the potential of scCO2 in natural biomaterial TE is extensively explored.  

Two commonly-studied natural TE scaffold biomaterials were examined: a single-

component biomaterial, type I collagen, and a multi-component biomaterial, extracellular 

matrix (ECM) obtained by decellularization of porcine aorta.  Both biomaterials were 

studied at the fundamental and applied level.   

First, the chemical compatibility of collagen and liquid and scCO2 was assessed.  

Compatibility was determined based on changes in four biochemical properties: thermal 

stability, molecular weight, secondary structure, and overall appearance.  For scCO2, no 

significant differences were observed, indicating chemical compatibility.  Liquid CO2 

treatment caused significant denaturing, though it was hypothesized that the apparent 

incompatibility may be a result of treatment conditions rather than total incompatibility. 

After chemical compatibility between collagen and scCO2 was established, scCO2 

was applied to crosslinked collagen films to extract residual glutaraldehyde after 

crosslinking.  After 1 hr of scCO2/ethanol treatment, over 95% of residual glutaraldehyde 

was removed, reducing the concentration below 1 ppm.  Differential scanning 

calorimetry analysis showed a high degree of crosslinking and a denaturation temperature 

of about 63°C both before and after scCO2 treatment.  Tensile testing did reveal a 

significant increase in both stiffness and tensile strength caused by scCO2 treatment, 

likely resulting from dehydration caused by the ethanol additive.  However, this 

dehydration is preventable and less disruptive than heat-based removal of residual 

glutaraldehyde. 
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Decellularized ECM is also commonly used as a TE scaffolds.  Current 

decellularization methods often utilize chemical detergents, which are residually 

cytotoxic and can damage ECM composition and ultrastructure.  scCO2 has been 

proposed as a decellularizing agent, but added ethanol severely dehydrates the matrix.  

The second half of this dissertation explores how scCO2 can decellularize a tissue without 

dehydrating it.  To prevent dehydration, a novel presaturation method was developed 

where scCO2 and water are thoroughly mixed before treatment.  Presaturation with water 

led to mass retention of over 99% in a model hydrogel and over 97% in porcine aorta 

during scCO2 treatment, compared to only 46% and 78%, respectively, when dry (pure) 

scCO2 was used, proving that dehydration during scCO2 treatment is easily prevented. 

Finally, scCO2 was used to decellularize porcine aorta.  Contrary to a previous 

report, scCO2 alone was unable to achieve complete cell removal, even with a polar 

additive.  However, when an SDS pretreatment step was used, the same scCO2 treatment 

completely decellularized porcine aorta as indicated by histology and DNA quantitation.  

Presaturation of scCO2 with water maintained the hydration state of the matrix, better 

maintaining the mechanical properties of the native tissue. 

This dissertation confirms the potential of supercritical CO2 as a processing 

method for naturally-derived biomaterial scaffolds.  Further work can be performed to 

determine the efficacy of CO2 on different scaffold compositions and morphologies as 

well as decellularization of other tissue types.  More complex treatments may also be 

possible, such as simultaneous sterilization and decellularization.  These studies provide 

insight into the mechanisms and applications of scCO2 in TE and offer a springboard for 

impactful discoveries in the future. 
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Chapter 1 Introduction 

 At the end of 2013, over 120,000 individuals in the United States were registered 

on the national organ transplant waiting list.  The size of the waiting list has continually 

increased over the past 25 years, while the number of donations plateaued in the 2000s 

and has slightly declined in the 2010s (see Figure 1.1), with the gap between the waiting 

list and the number of annual donations now exceeding 100,000 people [1]. It follows 

that the number of deaths for those awaiting transplantation, currently about 8,000 per 

year, will continue to increase over time.  These statistics clearly indicate that merely 

relying on human organ donation will be insufficient for meeting the medical needs of 

those requiring organ transplantation, both now and in the future. 

One way to address the organ deficit is the production and use of artificial organs.  

An artificial organ is a manmade construct that can perform the tasks and functions of a 

native organ which has been damaged or excised.  Though the concept of artificial organs 

has existed for over a century [2], widespread clinical use of artificial organs still does 

not exist. One exciting and relatively novel method for creating artificial organs is the 

field of tissue engineering (TE). TE involves culturing healthy cells from a patient (or 

from a stem cell line if autologous cells are unavailable) to create a new tissue in vitro, 

which can then be used as a graft to treat a tissue or organ defect [3].  The TE process is 

shown in pictorial form in Figure 1.2. 
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Figure 1.1 – Trends in organ donation in the United States, 1991-2013 (Approved for 

reuse by the United States Department of Health & Human Services; URL: 

https://optn.transplant.hrsa.gov/the-need-is-real-data/)   
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Figure 1.2 – Tissue Engineering Flowchart – (By HIA (Own work) [CC BY 3.0 

(http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons) 
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For example, one can consider how the TE process would be utilized for a patient 

with a bone defect.  First, a biopsy is taken from the patient’s healthy bone tissue.  

Healthy cells are isolated from the biopsy and then cultured in vitro until reaching an 

appropriate cell density.  Next, the cultured cells are seeded onto a biocompatible three-

dimensional construct called a TE scaffold along with appropriate growth factors and 

mechanical stimuli to create a tissue-engineered graft.  Finally, the graft is implanted into 

the damaged bone. Once inside the body, the cells continue to proliferate and 

differentiate, populating around the scaffold and eventually forming a new tissue or organ 

to replace the damaged one.  The scaffold is designed to naturally degrade over a set 

timeframe and be replaced by newly-deposited extracellular matrix (ECM). 

TE works well in theory, but a number of challenges have prevented its success 

and widespread clinical use.  The biggest challenge is determining the source and design 

of the scaffold.  An effective scaffold biomaterial must satisfy numerous biological, 

chemical, structural, and mechanical criteria, including [4]. 

- High biocompatibility/low immunogenicity to prevent host immune response 

- Interconnected pore structure that allows cell penetration 

- Appropriate morphology for the specific tissue or application 

- Suitable elastic modulus (stiffness) and flexural rigidity 

- Structural integrity to withstand pressure and mechanical forces 

- Surface chemistry that is not too hydrophilic or hydrophobic 

- Absence of any residual cytotoxic agents 

- Sterility to prevent infection after implantation 

- Bioactive and able to promote constructive remodeling 
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Two main approaches to creating TE scaffolds are possible: (1) producing scaffolds from 

synthetic biomaterials, and (2) using scaffolds derived from natural and/or xenogeneic 

sources.  Though both approaches have merit, natural biomaterials offer two primary 

advantages.  First, using naturally-derived scaffolds can reduce the possibility of bodily 

rejection and adverse immune response sometimes observed with synthetic biomaterials 

[5].  Second, recent research has uncovered the importance of ECM proteins in directing 

the tissue towards vascularization, innervation, and proper function; these outcomes are 

collectively called “constructive remodeling” [6].  During constructive remodeling, ECM 

proteins and their degradation products, including cytokines and chemokines, signal cells 

on when to migrate, proliferate, and differentiate [7].  In fact, the constructive remodeling 

effect of ECM proteins is so great that for some biomaterial and tissue combinations, 

such as collagen for bone tissue and elastin for blood vessels, the primary ECM 

component alone can be enough to promote constructive remodeling [8, 9]. 

 

1.1 Decellularization 

Xenogeneic organs or tissues contain non-autologous (foreign) cells, which must 

be removed prior to seeding the matrix to prevent undesired post-implant immune 

response [10, 11].  The process of removing foreign cellular material from a tissue or 

organ is called decellularization. The objective of any decellularization method is 

twofold: (1) to remove all foreign cellular material, and (2) to preserve the physical, 

mechanical, and biochemical properties of the ECM [12].   

Tissues differ in numerous ways, including variations in cell type, cell density, 

physical density, ECM composition, morphology, and thickness.  Because of these 
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differences, there are numerous, highly-varied decellularization protocols that exist for 

different tissues; sometimes there are even very different approaches for decellularizing 

the same type of tissue [13].  Decellularization is most commonly accomplished by 

contacting xenogeneic tissue with chemical detergents, sometimes in conjunction with 

enzymes [14].  Physical methods, such as sonication and agitation, can be used instead of 

or in tandem with chemical methods to decellularize a tissue [15].  Common 

decellularization methods are discussed in greater detail in Chapter 2. 

There is no universal or perfect decellularization protocol.  If treatment is too 

harsh, the ECM will be damaged, compromising mechanical integrity and bioactive 

properties.  If the treatment is too gentle, not all foreign cells will be removed, 

stimulating unwanted immune response [10].  In fact, it is accepted in the field that no 

decellularization treatment will be able to remove all cellular material from a tissue, and 

no treatment will be able to completely avoid damaging the ECM [13].  Therefore, the 

goal and challenge of creating a decellularization protocol is finding a balance between 

preserving enough of the matrix for it to promote constructive remodeling and removing 

enough foreign cellular matter to prevent an inflammatory immune response.  Both of 

these outcomes are required for the recellularized tissue to develop and function properly; 

therefore, the efficacy of a given decellularization technique must be determined by 

evaluating both criteria. Currently, there are no universally-accepted standards for 

determining the extent of decellularization.  However, Badylak’s group has recently 

proposed standards based on the mass and length of residual DNA fragments and the 

absence of cellular material in stained micrographs [12].  There are no universal criteria 

at all for successful ECM preservation, but mechanical properties, pore size and structure, 
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and ECM protein composition are often evaluated after treatment and compared to the 

properties of the native tissue. 

 

1.2 Supercritical Carbon Dioxide 

 An optimal decellularization technique has not yet been discovered, and 

conventional decellularization techniques have several weaknesses that need to be 

addressed.  Most protocols, especially ones that use chemical detergents, are fairly time-

consuming.  Many treatments last on the order of days [16], while treating denser tissues 

like blood vessels can take multiple weeks [17], and this time does not include post-

decellularization processing steps such as sterilization.  Residual detergents can be 

cytotoxic [10], as can residual crosslinking agents [18].  Detergents also can have 

additional deleterious effects in tissues containing basement membranes, such as bladder 

and skin [19, 20].  Because of these issues, novel decellularizing agents and methods for 

applying them are still being pursued. 

One method of processing biomaterials that has gained interest in recent years is 

supercritical fluids (SCFs).  A substance enters the one-phase SCF state upon exceeding 

both its critical temperature (Tc) and critical pressure (Pc), collectively known as the 

critical point (Tc, Pc).  Supercritical fluids are effective solvents because they have 

desirable transport properties, including minimal surface tension, low viscosity, and high 

diffusivity like gases, but they also have liquid-like density and solvation power that are 

much greater than those of most gases [21]. This combination of properties allows SCFs 

to penetrate through surfaces easily without damaging them because of their lack of 

surface tension.  Upon depressurization, the supercritical fluid outgases and exits the 
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system, avoiding problems with residual cytotoxic components often encountered in 

other methods. 

Supercritical carbon dioxide (scCO2), shown in Figure 1.3 (b), is especially 

promising for biomedical applications. The primary reason is thermodynamic: scCO2 has 

unusually low critical conditions.  Its Tc of 31.1°C allows treatment of biological 

materials at or near physiologic temperature (37°C), and its Pc of 7.4 MPa is mild enough 

to treat biomaterials safely.  Additionally, CO2 is readily available and safe – it is 

relatively inert, non-flammable, non-toxic, and non-mutagenic [21].  Equipment and 

processes utilizing supercritical CO2 have already been demonstrated in pasteurization 

[22-24], extraction of biological compounds [25, 26], production of TE scaffolds from 

synthetic polymers [27-29], and sterilization, the latter being a research thrust in our 

group [30-37]. 

Sterilization is of particular importance in TE to prevent nosocomial (hospital-

acquired) infection during surgery.  Traditional sterilization methods like steam 

autoclaving, ethylene oxide, and gamma irradiation are often unsuitable for biomaterials 

[30, 33].  Supercritical CO2 has been proven effective in the sterilization of decellularized 

porcine dermis and lung ECM [38, 39] and has been identified as an important subject of 

future research in scaffold sterilization [12].  Though not directly investigated in this 

dissertation, the possibility of simultaneous decellularization and sterilization or high-

level disinfection using a single CO2 treatment would be a potential boon for the field. 

Additionally, scCO2 has recently been used to aid in other TE processes, including for 

hydrogel foaming [40] and crosslinking of chitosan aerogels [41].  Furthermore, recent 

improvements in scCO2 processing techniques have eliminated the pore interconnectivity 
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Figure 1.3 – Visual Appearance of Dense-Phase CO2: Photographs of (a) CO2 in vapor-

liquid equilibrium and (b) CO2 in the supercritical state.    
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issues that were once a major hindrance to scCO2 polymer foaming techniques [42].  

However, despite the efficacy of scCO2 in the aforementioned applications, its use in 

treatment of natural TE scaffold biomaterials is very limited.  To the best of our 

knowledge, there has been no fundamental research on the chemical compatibility of 

scCO2 with natural biomaterials, such as collagen, and applied work in the literature is 

very limited.  Decellularization with scCO2 is completely unexplored aside from a single 

publication by Sawada’s group in 2008, where significant matrix dehydration was 

reported and no further reports were published [43]. 

 

1.3 Dissertation Objectives 

The overarching objective of this dissertation is to evaluate the potential of scCO2 

for use in the processing and fabrication of naturally-derived TE scaffolds.  This 

objective was accomplished by using scCO2 to treat a simple natural biomaterial, type I 

collagen, and a more complex natural biomaterial, porcine aorta tissue.  As shown in 

Figure 1.4, a fundamental study and an applied study were performed for each 

biomaterial.  The specific aims of this work are: (1) to determine the fundamental 

compatibility of type I collagen with liquid and supercritical CO2, (2) to extract residual 

glutaraldehyde from crosslinked type I collagen films using scCO2, reducing 

glutaraldehyde concentration below cytotoxic levels, (3) to design and develop a method 

for presaturating scCO2 with water and other volatiles to prevent dehydration of model 

scaffold biomaterials, and (4) to decellularize porcine aorta tissue using a scCO2-based  

treatment process and determine the relative effects of key process parameters on cell 

removal and scaffold properties. 
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Figure 1.4 – Dissertation Flowchart: Supercritical CO2 was used to treat both type I 

collagen and porcine aorta in fundamental and applied studies.  

  



www.manaraa.com

  

12 
 

Very little work has been done previously on fabrication of TE scaffolds with 

scCO2.  The findings of this dissertation will elucidate fundamentals of how supercritical  

fluids and scaffold biomaterials interact.  This knowledge can be leveraged into 

numerous applications for future clinical and industrial benefit in TE and the fields of 

chemical and biomedical engineering. 
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Chapter 2 Literature Review

 In recent decades, industrial and research interest in supercritical CO2 technology 

has seen a considerable increase in a wide variety of applications, including many in the 

biomedical field [44-46].  In recent years, TE has also seen continual growth and progress 

in research and development [3, 13, 47].  As this dissertation lies at the intersection of 

these two important and expanding areas, this chapter includes discussion of current 

knowledge and critical publications in both scCO2 and TE.  The objective of this chapter 

is to establish where and how this dissertation fits into both fields. 

 

2.1 Supercritical CO2 Technology 

 Prior to covering the most prominent applications of scCO2, some background on 

its unique thermodynamic and chemical properties will be discussed.  This subsection 

will then cover extraction, the primary industrial application of scCO2, with a focus on 

extraction of biological compounds.  It will conclude with discussion of two areas of 

scCO2 technology highly relevant to this dissertation: sterilization and TE applications. 

 

2.1.1 Supercritical CO2 Fundamentals 

 A pressure-temperature phase diagram for a pure substance, such as that of CO2 

shown in Figure 2.1, consists primarily of planar one-phase regions (solid, liquid, and 

vapor) and two-phase curves where thermodynamic equilibrium exists between the two   
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phases.  These curves on Figure 2.1 are A, the solid-vapor (sublimation) curve; B, the 

solid-liquid (fusion) curve; and C, the liquid-vapor (vaporization) curve.  There also two 

pressure-temperature coordinate points of interest.  Point D is the triple point, where the 

solid, liquid, and vapor phases exist in three-phase equilibrium.  More importantly for 

this work, point E is the critical point.  As the critical point is approached, the liquid and 

vapor phases approach equal densities and the phase boundary disappears.  Once the 

pressure and temperature of the critical point are exceeded, the substance enters the 

supercritical fluid phase [48].  

 Supercritical fluids have a unique combination of properties: densities on the 

order of liquids but diffusivities and viscosities on the order of gases.  Along with having 

minimal surface tension, these solvent properties allow SCFs to penetrate into pores, 

films, and surface openings without damaging them.  SCFs are green, sustainable 

replacements for organic solvents in many applications, especially in the area of cleaning 

materials and surfaces [49].  CO2 is one of the most commonly used supercritical fluids.  

It is non-toxic, non-flammable, non-mutagenic, relatively inert, odorless, readily 

available, and fairly inexpensive [21].  It also has relatively low critical conditions (Tc = 

31.1C, Pc = 7.4 MPa), making it particularly well-suited for biological applications.  A 

myriad of molecules have some degree of solubility in scCO2, especially small, non-polar 

ones [50].  Solubility of polar compounds is sometimes limited, but can be improved in 

many cases by dissolving a polar additive, such as ethanol, in scCO2, [51]. 

 CO2 in the liquid phase is also of interest.  Liquid CO2 exists at similar, 

sometimes greater densities than scCO2, and is therefore also considered a “dense-phase” 

fluid.  Liquid CO2 can exist at pressures as low as 1 MPa, making it desirable for  
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Figure 2.1 – Carbon Dioxide Phase Diagram: A – Sublimation Curve; B – Fusion Curve; 

C – Vaporization Curve; D – Triple Point; E – Critical Point; F – Critical Point Drying  
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applications where the higher temperatures and pressures of supercritical CO2 are 

detrimental, either physically to the specimen or economically because of the higher 

equipment cost [52, 53]. 

One important application of liquid CO2 is critical point drying (CPD), a process 

commonly used in TE [54] and other applications, such as electronics processing [55], 

aerogel formation [56], and scanning electron microscopy [57].  The primary advantage 

of CPD over conventional evaporative drying is that CPD avoids passing through the 

vaporization curve of the phase diagram; circumventing the two-phase region is desirable 

for delicate materials that can be damaged by the surface tension that exists at vapor-

liquid phase boundaries [58].  As shown on line F in Figure 2.1, CPD initiates when a 

liquid solvent, such as ethanol, is removed from a substrate by dissolving it in a second 

benign solvent, typically liquid CO2.  The mixture is then heated and/or pressurized until 

CO2 undergoes a phase transition from the liquid state to the supercritical state.  Finally, 

the pressure is reduced below the critical pressure, allowing the supercritical CO2 to enter 

the gaseous state without undergoing the vapor-liquid phase transition.  The gaseous CO2 

is removed from the system by depressurizing to ambient conditions. 

 Dense-phase CO2 has been utilized in a wide variety of applications, including 

reaction engineering [59], catalysis [60], polymerization [61], chromatography [62], 

particle synthesis [63], thin film synthesis [64], jet cutting [65], textile dyeing [66], and as 

a heat transfer fluid [67].  However, this section will focus on the three realms of CO2 

technology most relevant to this dissertation, which include extraction, sterilization, and 

tissue engineering. 
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2.1.2 Extraction  

Extraction, the process of separating one component from another using a solvent, 

is one of the most widespread applications of supercritical CO2 [21].  One of the oldest 

and best-known SCF extraction process is the decaffeination of coffee [68], which has 

more recently been extended to tea and spent coffee grounds [69, 70].  CO2-based 

extraction has some inorganic applications, such as removal of metal ions from water and 

other materials [71, 72], but the main focus of supercritical extraction is on biological 

molecules.  The extraction of oils, lipids, and organic solvents are of particular interest to 

TE applications. 

Supercritical CO2 extraction of animal and plant oils for supplemental and 

medicinal use has gained considerable attention in recent years.  For example, Ferdosh et 

al. used scCO2 and an ethanol additive to extract and fractionate fish oil, which contains 

healthy omega-3 fatty acids.  The fish oil was extracted from undesired and/or inedible 

tuna parts in a 2 hr process, though 3 days of pretreatment freeze-drying were required 

[73].  CO2 extraction of plant oils has been studied extensively, as well.   Plant oils 

containing fatty acids, one of the two subgroups of lipids, have been traditionally 

extracted using either a mechanical press or organic solvents, such as hexane or 

petroleum ether [74].  However, scCO2 has gained popularity in this field because it 

offers higher yields than a mechanical press without the environmental and safety hazards 

of organic solvents [75].  Some materials are extracted from plant by-products, such as 

lycopene from tomato peels [76], but most oils are extracted from seeds. Some types of 

plant oils successfully extracted with supercritical CO2 include tea seed [75], sunflower 

seed [77], and sesame seed [78], among many others. 
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A key subset of fatty acid-containing oils is those containing conjugated linolenic 

acids, which may help prevent atherosclerosis and fight some types of cancer [79].  Özkal 

et al. extracted flaxseed oil, an abundant source of α-linolenic acid, in 30-60 minutes of 

scCO2 treatment with yields of about 0.3 g/seed [80].  scCO2 extraction of G. 

Pentaphyllum (a Chinese herb) seeds for 160 min yielded an oil containing over 88% 

conjugated linolenic acids, which inhibited the viability of both leukemic and colon 

cancer cells by about 80% [81].  Another notable subset of fatty acids is phytosterols, 

which may lower cholesterol and the risk of heart disease [82].  Phytosterols have been 

extracted from many seed oils using scCO2, as well as other natural sources, such as bee 

pollen [83]. 

Along with fatty acids, the other subgroup of lipids is glycerides, which include 

waxes, triglycerides, and phospholipids [74].  Phospholipids are of particular interest for 

scCO2-based decellularization, as they are a primary component of cell membranes.  

However, phospholipids have been studied in much less detail than fatty acids, likely 

because their high polarity makes them more difficult to extract.  Still, some progress has 

been made in this area.  Tanaka et al. were able to extract phospholipids from salmon roe 

with up to 80% purity, though high concentrations of added ethanol were needed [84].  

Phosphatidylcholine has been extracted from inedible egg parts with scCO2, but a two-

step process was required and yield still was relatively low (< 50 g/kg) [85].  More 

recently, phospholipids were extracted from activated sludge using scCO2 to assess soil 

quality [86].  However, more work is needed to determine if extraction of cell membrane 

components is a viable approach to decellularization. 
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2.1.3 Sterilization 

 TE scaffolds must be sterilized before implantation, as hospital patients have an 

elevated risk of nosocomial infection because of weakened immune systems, close 

quarters, and the necessity of invasive procedures and implements [87].  This risk is 

especially high in intensive care units [88].  Thus, sterilization of all medical devices and 

implants is critical for patient safety.  Numerous methods exist to sterilize materials, but 

most have one or more significant drawbacks for a biomedical application.  The high 

temperature and humidity of steam autoclaving can denature proteins and damage fibrous 

and polymeric materials [89].  Ethylene oxide is toxic, flammable, and possibly 

carcinogenic [90].  Gamma irradiation has been shown to cause unwanted changes in the 

molecular weight, glass transition temperature, and water content of TE biomaterials 

[91].  Liquid sterilants such as phenols, glutaraldehyde, and peracetic acid are eye and 

skin irritants with varying degrees of toxicity [92]. 

 Dense-phase CO2 is often used for sterilization of biomaterials because it does not 

present any of these drawbacks.  Spilimbergo’s group has done extensive work on the 

mechanisms of cell deactivation by scCO2.  Through in situ fluorescence staining, they 

have shown that cell death primarily occurs from CO2 permeation of the lipid bilayer in 

the cell membrane [93].  CO2 enters the cell, lowering cellular pH and deactivating 

enzymes [94, 95].  Bacterial spores are typically more difficult to kill than vegetative 

bacteria.  Our group showed using transmission electron microscopy that scCO2 damages 

the spore envelope, but a lethal oxidizing additive, such as hydrogen peroxide, must then 

be absorbed by the cell to complete the deactivation process [35].  Pressure cycling 

and/or electric pulses also improve spore deactivation [44]. 
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 The parameters required to achieve sterilization are or at least high-level 

disinfection (which does not require removal of spores) are somewhat application-

dependent, but usually the supercritical CO2 phase is used.  A temperature of 40°C or 

above and a pressure of 20 MPa or higher (or a more moderate 8-15 MPa range with 

pressure cycling) are usually adequate [44].  Deactivation of vegetative bacteria and 

bacterial spores from biomaterials using scCO2 has been demonstrated numerous times 

by our group and many others [34, 96, 97], and is also commonly done in pasteurization 

and food processing [22, 98].  However, comparatively little work has been done on virus 

deactivation with scCO2.  In the late 1990s, Larzul’s group used scCO2 to remove viruses 

from bone allografts, though three additional processing steps were required after scCO2 

treatment to achieve high levels of virus deactivation [99].  Recently, nitrous oxide (N2O) 

and fluorocarbons have been proven more effective for virus removal under most 

circumstances, possibly because N2O is pH neutral instead of acidic [44].  N2O has 

similar critical conditions like CO2, but is often avoided because of safety concerns; it is 

strong oxidizer that can cause explosions in the presence of an organic fuel source [100]. 

   The microbial removal properties of supercritical CO2 also extend beyond viruses 

and bacteria.  Exploratory research has shown potential for supercritical CO2 in pest 

control during food storage [101].  In our lab, the solubility of tea tree, hinoki, and cedar 

wood oils in supercritical CO2 has been utilized to create an acaricidal treatment on 

household objects for the prevention of asthma [102].  These technologies still have 

ample room for exploration and development. 

 Though supercritical is usually the preferred CO2 phase, liquid CO2 has been used 

in some sterilization applications.  There are three situations that make liquid CO2 



www.manaraa.com

  

21 
 

particularly desirable for an application: (1) when cost of equipment is a limiting factor, 

(2) when the higher pressures and temperatures required by the supercritical phase would 

be deleterious, or (3) when surfactant additives are used, since their solubility in CO2 is 

often inversely proportional with temperature [53, 103].  In our group, Jimenez et al. 

were able to use liquid CO2 to completely sterilize a model hydrogel [32], and Tarafa et 

al. successfully removed bacterial endotoxin from titanium disks using water, liquid CO2, 

and commercial surfactant Dehypon Ls-54 [104, 105].  Liquid CO2 has also been used to 

sterilize textiles [52]. 

 For the purposes of this dissertation, it is worth noting that there are two 

publications where scCO2 was used to sterilize an acellular material.  In 2009, Qiu et al. 

used scCO2 to sterilize acellular porcine dermis [38].  Small pieces of ECM were 

sterilized using supercritical CO2 with a peracetic acid additive.  In under 30 minutes, 6 

log reduction was attained for Bacillus atrophaeus, a bacterial spore that has traditionally 

been analyzed for sterilization effectiveness [31, 35].  They also studied removal of 

encephalomyocarditis (EMC) and other viruses, and attained complete virus removal in 

15 minutes of scCO2 treatment, which was more effective than two hours of treatment in 

peracetic acid alone.  Additionally, scCO2 treatment caused less than a 2% change in 

matrix weight, showing a relatively mild impact of treatment.  Balestrini et al. similarly 

utilized scCO2 to sterilize acellular lung ECM while maintaining key scaffold properties 

[39].  Supercritical CO2 appears to have considerable potential for ECM sterilization, but 

more research is needed, particularly on larger or three-dimensional samples.  This 

research may soon occur given the recent classification of xenogeneic scaffolds as 
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medical devices by the United States Food and Drug Administration (FDA), thereby 

requiring terminal sterilization prior to clinical use [106]. 

 

2.1.4 Synthetic TE Scaffolds 

 CO2 has long been known to create pores in polymeric substances during 

depressurization, even in the gaseous phase.  This process is often called polymer 

foaming, and it occurs because CO2 plasticizes the polymer, liquefying it and increasing 

its density.  Upon depressurization, CO2 nucleates and forms gas bubbles when leaving 

the polymer, creating a pore network [107].  Two main criteria are necessary for a 

polymer to undergo this process: (1) moderate to high affinity for CO2 and (2) a glass 

transition temperature below the processing temperature [108]. 

 Careful manipulation of process variables, such as pressure, treatment time, and 

depressurization rate, can lead to predictable porosity and average pore size of the treated 

biomaterial.  A groundbreaking paper demonstrating this was published by Howdle’s 

group in 2007 [29].  They studied scCO2 foaming of poly(lactic acid), PLA, and 

poly(lactic-co-glycolic acid), PLGA, in considerable depth.  Their work included a 

factorial design of temperature, pressure, molecular weight, glycolic acid concentration, 

depressurization rate, and treatment time.  They found increasing temperature and 

depressurization rate to be directly proportional to pore size, while increasing pressure, 

treatment time, molecular weight, and glycolic acid concentration were indirectly 

proportional to pore size.  Porosity was in the acceptably high 70-80% range in most 

cases, except for very high glycolic acid concentrations, where it decreased considerably.  

A more uniform pore size distribution was found for scCO2 compared to gaseous CO2, 
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likely because the higher diffusivity in the supercritical state creates a more uniform 

distribution of CO2 within the plasticized polymer. 

 Recently, the use of inert particulate additives and CO2/water/surfactant 

emulsions has considerably improved pore interconnectivity, overcoming a significant 

barrier to the viability of scaffolds fabricated using this technique [42].  CO2 has also 

been used to augment other scaffold fabrication methods, including emulsion templating 

[109], microsphere sintering [110], phase inversion [111], electrospinning [112], and 

biomolecule impregnation [113].   

 Another concern during any scaffold treatment is loss of bioactivity caused by 

chemical reactions that alter surface chemistry.  Loss of bioactivity could inhibit cellular 

function or cell adhesion to a scaffold.  However, scCO2 is relatively inert and has been 

shown to not adversely affect bioactivity of both synthetic bone scaffolds and essential 

oil extracts [114, 115].  Still, establishing bioactivity of a natural scaffold after scCO2 

treatment would be an important step. 

 Since CO2 also can be used to sterilize TE scaffolds, the amount of processing 

steps can potentially be reduced by using CO2 to both form and sterilize the scaffold [33].  

Like with extraction and sterilization, the supercritical phase is much more commonly 

used in scaffold treatment, but liquid CO2 has been shown to have compatibility with 

some synthetic polymers, particularly ones with higher crystallinity [116].  CO2 sorption 

is so high in amorphous materials that it often causes irreversible effects from extreme 

amounts of swelling; the compatibility of CO2 crystalline materials is likely caused by 

their reduced free volume compared to amorphous materials [117]. 
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 Very little work has been done on CO2 and natural polymers, including potential 

TE scaffold biomaterials.  Though supercritical CO2 has been applied sparingly to leather 

processing in the past decade [118, 119], to our knowledge no work has been done prior 

to this dissertation on the fundamental interactions of collagen and dense-phase CO2.  

However, Reverchon’s group recently created chitosan aerogels by lyophilization, 

crosslinked them with glutaraldehyde, and then removed almost all glutaraldehyde (final 

concentration below 0.1 ppm) using scCO2 and ethanol [41, 120].  This clearly presents 

an opportunity for scCO2 in crosslinking of naturally-derived scaffold materials.  Recent 

reviews in the decellularization field have also recognized the potential for sterilization 

ECM with scCO2 and recommend further research in the area [12, 13], but aside from the 

aforementioned sterilization work [38, 39], no literature is available on the subject. 

There is one publication where scCO2 is used in decellularization.  Sawada et al. 

used scCO2 and an ethanol additive to decellularize porcine aortas [43].  They reported 

100% removal of DNA and 80-90% removal of phospholipids at relatively mild pressures 

and temperatures.  However, problems with tissue dehydration, inability to completely 

rehydrate, loss of mechanical strength, and residual phospholipids were reported.  

Though this paper was published in 2008, to our knowledge no follow-up or similar 

studies have been published since.  Chapter 6 of this dissertation includes our efforts to 

replicate and improve upon Sawada’s findings. 

 

2.2 Natural Biomaterial TE Scaffolds 

 We now turn our attention to the broad topic of TE scaffold design and 

fabrication.  Two main routes exist for the fabrication of TE scaffolds: (1) synthetic 
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biomaterials, including synthetic polymers and composites, and (2) natural biomaterials.  

While the former path has scientific merit and does offer some advantages, it is beyond 

the scope of this dissertation and will not be discussed in greater detail.  For further 

reading on the subject of artificial TE matrices, the reader is encouraged to examine the 

thorough review by Cho’s group [47]. 

There are two primary avenues for production of TE scaffolds composed of 

natural biomaterials.  The first is scaffolds composed primarily of one major ECM 

protein, often collagen, which are formed into a desired shape and size by various 

methods (e.g. electrospinning, lyophilization, etc.) [121].  The other subgroup is scaffolds 

composed of ECM; these are created by decellularization of an animal tissue, with the 

resulting ECM being used as the scaffold [122].  A great amount of variation exists in the 

methods by which natural biomaterial TE scaffolds are produced.  Some of the most 

common and most pertinent to this work are explored in this subsection. 

 

2.2.1 Collagen Scaffolds 

The extracellular matrix gives structural support to cells, spatial cues for tissue 

growth, and direction for cell behaviors and functions [123].  These features all make 

collagen a desirable scaffold material.  Collagen is the most abundant protein in the ECM 

of most tissues; it therefore has numerous sources in the body and is an intuitive 

candidate for a natural biomaterial scaffold, especially if decellularization of the whole 

ECM is challenging [124].  Though having the entire ECM is ideal for promotion of 

constructive tissue remodeling [7, 125], collagen has been shown to regulate cell 

adhesion, migration, proliferation, and differentiation and is often easier to isolate [126]. 
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The advantages of collagen as a scaffold substrate are numerous.  In addition to 

its role in remodeling, collagen has low immunogenicity and antigenicity, is porous and 

permeable, and has controllable biodegradability based on its extent of crosslinking.  It 

also biodegrades in a more favorable way than many synthetic materials.  While synthetic 

materials degrade from an immune response mediated by macrophages, ECM proteins 

like collagen elicit a less aggressive immune response that is mediated by matrix 

metalloproteinases and growth factors, stimulating natural tissue growth during scaffold 

degradation [4]. 

There are also numerous sources of collagen available.  Human collagen can be 

harvested from the placenta [127], but most collagen traditionally comes from 

mammalian sources, including cow, pig, rat, and sheep.  More recently, fish collagen has 

also been purified from parts that are normally discarded [128].  Finally, studies have 

been done to produce recombinant collagen; this could be important if collagen scaffolds 

experience a significant rise in usage, as yields from animal sources are often low [129]. 

Some scaffolds are made from pure collagen, usually a combination of types I, II, 

and III, since these are most common in the human body.  One common fabrication 

method is lyophilization, or freeze-drying.  Lyophilization protocols involve placing a 

collagen gel or solution into a specific shape or mold, then freezing it and removing the 

water.  Scaffold properties can be manipulated by changing collagen concentration and 

freezing time [130].  Another popular approach is electrospinning.  In this method, 

collagen is placed in a syringe or spinneret, charged with high voltage, and a jet 

eventually shoots at a grounded target once the potential difference is high enough, 

evaporating the solvent and creating a fiber [131].  These fibers can be manipulated into 
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various shapes and sizes.  Finally, extrusion methods utilize syringe pumps to flow 

collagen solutions into a desired shape or area.  Collagen can be extruded into different 

geometries based on the design of the extruder, such as the Yost group’s tubular design, 

which has been used to make TE scaffolds for heart, bone, and blood vessel tissues [4, 

132-134]. 

The main disadvantage of collagen as a scaffold material is that it lacks 

mechanical strength, especially when fully hydrated [121].  Collagen is often physically 

or chemically crosslinked to improve its mechanical strength.  Common physical 

crosslinking methods include dehydrothermal treatment and ultraviolet or gamma 

irradiation [135].  Chemical crosslinking has been traditionally done with glutaraldehyde 

or azides [136], but these chemicals are cytotoxic if not fully removed [18, 137].  Less 

hazardous crosslinkers have been pursued recently, including EDC [138], genipin [139], 

and riboflavin [140], but these alternatives may be less potent [141]. 

Instead of crosslinking, the mechanical strength of collagen can be strengthened 

by incorporating an additional material into the scaffold to create a collagen blend.  These 

materials include polymers, composites, and ceramics.  Some polymers, like poly(ε-

caprolactone) (PCL), are synthetic polymers used commonly in TE and add mechanical 

strength and control over degradation rate [142].  Natural polymers are used as well; for 

example, silk fibroin adds mechanical strength to collagen and also provides extra 

adhesion sites during cell seeding.  For example, Wei et al. used a collagen/PCL/silk 

fibroin blend to create a bladder scaffold that promoted proliferation of epithelial cells 

[143].  Other common blending materials include hydroxyapatite, a ceramic often used in 

bone tissue scaffolds for its osteoinductivity [144], and carbon nanotubes, which can 
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increase scaffold stiffness and promote cell differentiation [145].  Growth factors can also 

be incorporated into collagen scaffolds, particularly during electrospinning [146]. 

 

2.2.2 Decellularized ECM Scaffolds 

Decellularized scaffolds are fabricated by removing DNA and cellular matter 

from an animal tissue and using the recovered ECM as a TE scaffold.  The primary 

benefits of ECM scaffolds are low immunogenicity and the capacity for constructive 

remodeling after recellularization [5-7, 125].  Constructive remodeling involves the 

development of nerves, vasculature, and proper tissue function after a scaffold is 

implanted.  It occurs as a result of an anti-inflammatory immune response mediated by 

Th2 helper cells and M2 macrophages, rather than the pro-inflammatory Th1 cells and 

M1 macrophages normally observed in the deposition of scar tissue [106].  This type of 

response is associated with ECM scaffolds specifically [147, 148]. 

Decellularization has been performed on almost every tissue in the body, 

including adipose [149], bladder [150], blood vessel [151], bone [152], brain [153], 

cornea [154], esophagus [155], heart [156], intestine [157], kidney [158], liver [159], 

lung [160], nerve [161], skin [162], trachea [163], and others.  Decellularized tissues 

originate from several different mammalian sources, most commonly porcine, bovine, 

ovine, or murine, among others [13].  There are numerous decellularization methods and 

agents, but decellularization techniques are usually categorized as physical, chemical, 

enzymatic, or a combination of the three [12]. 

Chemical treatment often involves removal of cells with chemical detergents 

(surfactants).  The two most common detergents are sodium dodecyl sulfate (SDS) and 
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Triton X-100; they are nearly ubiquitous in the field.  SDS is an ionic detergent and 

functions by solubilizing DNA and lipid membranes, as well as disrupting covalent 

protein-protein bonds.  The main drawbacks of SDS are residual cytotoxicity and 

disruption of glycosaminoglycans (GAGs) and other ECM molecules [122, 164].  Triton 

X-100 is a non-ionic detergent that solubilizes proteins; it is less disruptive to ECM, but 

fails to decellularize denser tissues [165].  Zwitterionic detergents, such as tributyl 

phosphate [166] and CHAPS [160], maintain the native charge and state of proteins and 

are often effective in decellularizing thin tissues.  Any detergent will eventually cause 

ECM degradation, so they are usually limited to very low concentrations and/or short 

treatment times [167].  Chemical treatment can also include acids, bases, or organic 

solvents, though these can significantly alter ECM mechanical properties and chemical 

composition and are less common [155, 168].  Of particular note for this study is 

Lumpkins’ use of ethanol in decellularization.  As in Sawada’s work, considerable 

dehydration was reported, with ECM stiffness increasing threefold [168]. 

Biological agents can destroy and remove cellular material from tissues.  In 

particular, certain enzymes can break the bonds in large organic molecules, such as 

peptides and nucleotides.  For example, in adipose decellularization, Choi et al. used 

DNase and RNase in conjunction with SDS to achieve more complete decellularization 

than SDS alone [149].  Chelating agents, such as EDTA, can aid cell removal by 

increasing membrane permeability and by breaking adhesions between cells and the 

ECM via disruption of calcium transfer [169]. 

Finally, physical treatment can be used to detach cells from the ECM.  Agitation 

and sonication are used to burst cells or dislodge them from the ECM [15, 170].  High 
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hydrostatic pressure (HHP) followed by extended washing has been used to decellularize 

aortic tissue [171], suggesting potential for scCO2 in decellularization, as its pressure is 

far lower than HHP.  Another common physical treatment is electroporation, where cell 

membranes are lysed by electrical pulses [172, 173].  These and other physical 

decellularization methods, such as temperature treatment and pressure gradients, are 

described in greater detail by Keane et al. [13]. 

Of particular note for this dissertation is the decellularization of blood vessels by 

Simionescu’s group [151, 174, 175].  In particular, they have had considerable success 

with immersion decellularization of aorta and aortic roots using a 16-day treatment of 

SDS, Triton X-100, sodium deoxycholate, and EDTA followed by 4 days of enzymatic 

treatment.  The resulting ECM was acellular and responded well to biaxial mechanical 

testing [17].  The group also created elastin scaffolds for arterial TE in diabetic patients 

by decellularizing in sodium hydroxide, which removed most of the collagen [9].   

Though these scaffolds are of excellent quality, they are time-consuming to produce.  If 

successful, scCO2 decellularization would offer a significant reduction in treatment time. 

The term “decellularization” once referred primarily to the treatment of tissues, 

small layers of cells that compose part of an organ.  Now, much research is being done on 

whole-organ decellularization.  This potentially represents a great improvement in 

fabrication efficiency because macroscopically large volumes can be decellularized using 

just one treatment process, with the ultimate objective being the ability to engineer and 

mass-produce entire organs for patients in need of organ transplants [176].  Most whole-

organ decellularization processes use a technique called perfusion to apply the 

decellularizing agent.  A perfusion system involves connecting a small tube to the native 
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vasculature (e.g. Baptista et al. chose the portal vein in whole liver decellularization 

[159]) and then applying a small flow (usually on the order of 1 mL/min) of one or more 

decellularizing agents throughout the organ’s vasculature for several hours or days [177].  

This can uniformly decellularize a three-dimensional structure.  Recellularization has 

proven extremely challenging, but is usually attempted using a perfusion bioreactor with 

cell media. 

Because of the many different treatment types and the lack of universal standards 

for both decellularization and ECM properties, it is difficult to compare different 

decellularization protocols and results.  The characteristics of a successfully 

decellularized tissue or organ are generally agreed upon in the field – the material should 

be (1) acellular, (2) sterile, and of the same (3) mechanical strength (4) biochemical 

composition and bioactivity as before treatment.  Yet, there is little-to-no agreement on 

quantitative standards to determine if these criteria have been met, and the ability to 

confirm decellularization is critical given the severe inflammation and rejection caused 

by implantation of an incompletely decellularized construct [10]. 

Crapo et al. addressed this lack of a universal standard in their 2011 

decellularization review [12], and suggested the following characteristics to define a fully 

decellularized material: 

1. Less than 50 ng of double-stranded DNA per mg ECM (dry weight) 

2. DNA fragment length of less than 200 base pairs 

3. No “visible nuclear material” after DAPI and/or H&E staining 

However, this has yet to become a widespread standard, and in their words the standard 

“may be too stringent, sufficient, or too liberal.”  Furthermore, this decellularization 
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standard only addresses the first of the four points mentioned above.  Desired sterility of 

implanted medical devices, including xenogeneic scaffolds, has been established by the 

FDA at 6 log reduction of pathogens [37].  However, quantitative standards on the 

mechanical and biochemical properties of decellularized scaffolds are still needed. 
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Chapter 3 Fundamental Interactions of Type I Collagen and Dense-Phase CO2

3.1 Introduction 

Collagen is the most abundant protein in the human body and has been studied at 

length as a biomaterial for TE scaffolds [121].  Some common methods for fabricating 

collagen scaffolds include electrospinning [146], lyophilization [130], extrusion [8], and 

gelation [178].  The advantages of collagen scaffolds are numerous.  Collagen is a key 

player in tissue growth and remodeling, having been shown to direct cell adhesion, 

migration, and proliferation [126].  Collagen has low immunogenicity and antigenicity, is 

porous and permeable, and its biodegradation rate can be controlled by the extent of 

crosslinking [123].  It also elicits an anti-inflammatory immune response rather than the 

pro-inflammatory response of many synthetics [4].  There are numerous sources of 

collagen available, including mammalian [179], fish [128], and recombinant [129]. 

The main disadvantage of collagen as a scaffold material is that it lacks adequate 

mechanical strength, especially when hydrated [121].  For this reason, collagen is often 

treated improve its mechanical strength; in fact, collagen has been treated ever since the 

first production of leather many decades ago [180].  One approach is material blending, 

the addition of a second biomaterial to improve mechanical strength.  The primary 

advantage of material blending is that it allows the engineer to tailor the properties of the 

scaffold based on the properties of the material chosen.  Materials commonly added 

include natural polymers like silk fibroin [181], synthetic polymers like
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poly(ε-caprolactone) [142], carbon fibers or nanotubes [182], and ceramics such as 

hydroxyapatite [144]. 

Collagen is also commonly processed using solvents.  One reason for such 

treatment is crosslinking, which improves the mechanical strength of collagen without the 

need of material blending.  Physical crosslinking is accomplished by ultraviolet 

irradiation or dehydrothermal treatment [135].  Also quite common is chemical 

crosslinking, often done with glutaraldehyde [136].  However, glutaraldehyde is 

cytotoxic if not fully removed [18], and the removal process is often difficult.  Less 

hazardous crosslinkers have also been pursued recently, including carbodiimides [138], 

genipin [139], and riboflavin [140].  Collagen is treated with alcohols and phenols in 

other applications, but these compounds can affect the thermal and conformational 

stability of the collagen triple helix [183]. 

Given the extensive amount of collagen processing that occurs, novel solvents 

could significantly benefit the field.  One solvent that we feel has been overlooked is 

supercritical CO2.  Below its critical temperature and pressure, a pure fluid can exist in 

two-phase vapor-liquid equilibrium.  But upon exceeding the critical values, a pure fluid 

exists as a one-phase supercritical fluid.  Supercritical fluids have low diffusivities and 

viscosities like gases, but high densities like liquids; these properties make them desirable 

solvents [21].  Supercritical CO2 is of particular interest because of its unusually low 

critical temperature of 31.1°C, allowing treatment of biomaterials at physiologic 

temperature (37°C).  CO2 is also non-toxic, non-flammable, chemically inert, and readily 

available.  Supercritical CO2 has already been utilized in a number of other biomedical 

applications, including extraction of biomolecules [25, 73, 80], polymer foaming [28, 
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29], decellularization [43], and sterilization, a focus area for our group [30-37, 104, 116].  

Additionally, Reverchon’s group recently used scCO2 to extract residual glutaraldehyde 

from a crosslinked chitosan aerogel [41]; the same is almost certainly possible for 

collagen scaffolds. 

Very few published reports of scCO2 treatment of collagen exist, and they are 

very development-oriented, such as sterilization of collagen sponges [184] and infusion 

of transglutaminase into leather [185].  To our knowledge, no one has studied the 

fundamental interactions between collagen and scCO2 or assessed their chemical 

compatibility.  Chemical compatibility exists if two molecules do not react when one is 

exposed to the other, and if exposure does not cause thermal phase changes in one or both 

species (in the specific case of proteins, the phase change is denaturation) [186, 187].  

Additionally, there has been no published study on treatment of collagen with liquid CO2.  

CO2 in the liquid phase can be desirable for applications constrained by equipment cost 

or the higher temperatures or pressures needed for scCO2. [32, 33, 104].  Liquid CO2 is 

known to be compatible with crystalline synthetic polymers [116], making collagen a 

likely candidate for liquid CO2 compatibility given its high crystallinity. 

The objective of this study is to observe how the native collagen triple helical 

structure responds to treatment with liquid and supercritical CO2.  This will be done by 

analysis of three properties before and after CO2 treatment: (1) thermal stability, (2) 

molecular weight distribution, and (3) changes in secondary structure.  After establishing 

how dense-phase CO2 and collagen interact, viable applications for CO2 processing of 

collagen will be elucidated. 
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3.2 Materials and Methods 

The experiments performed were chosen to determine how liquid and 

supercritical CO2 affect the physical and biochemical properties of type I collagen. 

 

3.2.1 Collagen Fiber Extrusion 

A 1% (w/v) type I bovine corium collagen dispersion in water was obtained from 

the Yost group (Medical University of South Carolina, Charleston, SC), prepared in their 

lab as described previously [4].  The collagen was extruded into fibers based on the 

method of Dunn’s group [181].  An aliquot of collagen was thawed overnight at 4ºC and 

the pH was reduced to 2.4 using 1 M hydrochloric acid.  The collagen was vortexed once 

every 10 min for 30 min (3 times total) and then centrifuged at 5000 rpm for 15 min to 

degas.  During vortexing and centrifugation, a fiber formation buffer (FFB) was prepared.  

This buffer consisted of 0.135 M NaCl, 0.03 M N-[Tris(hydroxymethyl)methyl]-2-

aminoethanesulfonic acid (TES), and 0.03 M sodium phosphate dibasic heptahydrate 

(SPDH). The buffer was heated to 37ºC and sodium hydroxide pellets were added to 

increase the pH to 7.5. 

After collagen centrifugation, the FFB was poured into a Pyrex container with 

large surface area and the collagen dispersion was loaded into a syringe pump attached to 

1.59 mm (1/16 inch) diameter polyethylene tubing.  The collagen was then extruded 

through the tubing and into the FFB at a 0.1 mL/min flow rate.  The self-assembled 

fibers, usually 10-15 cm in length and 1.5 mm in diameter, rose to the surface from 

buoyancy forces.  After 10 minutes, the FFB was siphoned and replaced with isopropanol 

and the fibers were soaked for 4 hr to remove residual buffer.  Finally, fibers were 
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removed from the isopropanol and dried overnight under the tension of their own weight.  

Dried collagen fibers were stored at room temperature until CO2 treatment. 

 

3.2.2 Dense-Phase CO2 Treatment 

Collagen fibers were placed in a 25 mL cylindrical stainless steel pressure vessel 

with threaded endcaps (Waters Corp., Milford, MA) and secured in an upright position 

using small rare earth magnets prior to treatment with CO2.  Fibers were treated with 

dense-phase CO2 in one of two states: the liquid phase, 8 MPa and 10°C (ρCO2 = 0.903 

g/mL), or the supercritical phase, 20 MPa and 37°C (ρCO2 = 0.856 g/mL), under dynamic 

conditions (1 mL CO2/min). 

A schematic of the apparatus used can be viewed in Figure 3.1.  Bone-dry grade 

carbon dioxide (1) (99.8% purity with siphon tube, Airgas National Welders, Charlotte,  

NC) was compressed in a chilled syringe pump (3) (500 HP Series, ISCO Inc., Lincoln, 

NE) and slowly injected into the pressure vessel (4), which was maintained at the desired 

temperature by the environmental chamber (5) (ESPEC Corp. LU-113, Osaka, Japan).  

The pressure in the vessel was maintained by a back-pressure regulator (6) (TESCOM, 

Elk River, MN).  After 1 hr of exposure to CO2, the system was depressurized at a 

controlled rate of 0.34 MPa/min (50 psi/min) using a manual hand pump (7) (High 

Pressure Co., Erie, PA).  Valves and fittings rated for pressures up to 68.9 MPa (2) (High 

Pressure Co., Erie, PA) were used throughout the system.     
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Figure 3.1 – Collagen Fiber Testing Schematic: 1 – CO2 Supply; 2 – High Pressure  

Valve; 3 – Syringe Pump; 4 – Environmental Chamber; 5 – Presaturation Chamber; 6 – 

Collagen Fiber; 7 – Manual Hand Pump; 8 – Pressure Gauge; 9 – Back-Pressure 

Regulator  
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3.2.3 Bicinchonic Acid Assay 

Protein concentrations of solutions used in the following sections were 

determined using the bicinchonic acid (BCA) assay.  To perform the BCA assay, 25 μL 

of a solution of unknown protein concentration was loaded into one or more wells in a 

96-well plate and mixed with 200 mL of the BCA working reagent (Thermo Scientific,  

Waltham, MA).  The unknown samples and a set of known bovine serum albumin (BSA) 

standards were scanned at 562 nm with microplate reader.  Optical density readings of   

the BSA standards were used to create a standard curve, which was subsequently used to 

determine the concentration of the collagen solution. 

 

3.2.4 Differential Scanning Calorimetry (DSC) 

 Collagen fibers were characterized using DSC to ascertain possible changes in 

thermal stability caused by CO2 treatment.  After CO2 treatment, collagen fibers were 

dissolved in 4% v/v (0.7 M) acetic acid to create a collagen solution with 1 mg/mL 

collagen concentration.  Each solution was degassed for 15 min using a vacuum 

desiccator and magnetic stirring bar before testing.  After doing a baseline scan of acetic 

acid, the degassed collagen solution was carefully added to the sample port of the Nano 

DSC (TA Instruments, New Castle, DE).  The instrument was pressurized to 3 atm 

(gauge) and the sample was heated from 15 to 100°C at a rate of 2°C/min.  Data were 

recorded and analyzed with the NanoAnalyze software accompanying the instrument. 
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3.2.5 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

After CO2 treatment, collagen fibers were dissolved in 4% acetic acid.  Laemmli 

sample buffer (Bio-Rad, Hercules, CA), which contained 62.5 mM Tris-HCl (pH 6.8), 

2% SDS, 0.01% bromophenol blue, and 25% glycerol, was reduced with β-

mercaptoethanol (βME) to a βME concentration of 5% and then mixed with the four 

collagen solutions: untreated, liquid CO2-treated, scCO2-treated, and thermally denatured 

collagen (used as a control).  The solutions were heated for 10 min at 80˚C using a water 

bath. After cooling to ambient temperature, 10 μg of protein was loaded into the wells of 

a 4-15% acrylamide Mini Protean TGX gradient gel (Bio-Rad).  Running buffer (Tris-

Glycine buffer, Bio-Rad) was added and electrophoresis was conducted at a constant 100 

V until the dye front approached the bottom of the gel.  Precision Dual Color Standards 

(Bio-Rad) were used as molecular weight markers in the leftmost well. 

After electrophoresis, the gel was separated from the plastic cover and washed 

three times with deionized water for 5 min each.  The water was decanted and the gel was 

stained for 1 hr on an orbital shaker using 50 mL of Coomassie Brilliant Blue R-250 stain 

(Bio-Rad).  The gel was washed for 30 min in deionized water and then photographed to 

observe protein bands. 

 

3.2.6 Circular Dichroism (CD) 

The same collagen treatments studied in SDS-PAGE were dissolved in 10 mM 

sodium phosphate and studied using a CD spectropolarimeter (Jasco J-815, Oklahoma 

City, OK).  Collagen solutions were analyzed at concentrations of 10, 15, and 20 μg/mL, 

and a thermally-denatured collagen solution was used as a negative control. Nitrogen 
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flow set to 10 L/min.  After waiting 30 minutes for the xenon lamp to reach full power, 1 

mL of each collagen solution was added to a quartz cuvette.  CD scans were run at scan 

rates of 20 and 50 nm/sec over a 250-190 nm wavelength range.  Data were exported to 

Excel and saved to a USB drive. 

 

3.2.8 Statistical Analysis 

Graphs and tables show the mean value plus or minus one standard deviation.  A 

Student’s t-test was used to determine statistical differences between groups.  95% 

confidence (p < 0.05, indicated by *) was considered statistically significant, while 99% 

confidence (p < 0.01, indicated by **) was considered extremely significant. 

 

3.3 Results and Discussion 

 Though collagen processing and compressed CO2 have each garnered attention in 

the TE field, little is known about the fundamentals of how the two interact.  In this 

study, chemical compatibility of type I collagen with liquid and scCO2 was assessed by 

studying changes in thermal stability (DSC), molecular weight (SDS-PAGE), secondary 

structure (CD), and water content (vacuum drying).  If native collagen is chemically 

compatible with either or both CO2 treatments, then applied processing can be explored. 

Though chemical compatibility is studied directly, mechanical compatibility can also be 

inferred given the temperatures and pressures required for dense-phase CO2 to exist. 
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3.3.1 Thermal Stability  

 For CO2 to be practical in collagen processing, maintaining the thermal stability 

of the protein is crucial.  If collagen is denatured by heat, the crystalline regions collagen 

melt and it loses functionality like any other protein [188, 189].  Native collagen at 

mildly acidic pH is reported to denature at temperatures as low as 39-40°C [183].  This 

makes scCO2 treatment a concern because treatment at physiologic temperature (37°C) 

approaches this threshold. 

 The thermal stability of treated and native collagen was assessed by DSC.  A 

sample DSC thermogram of untreated collagen is shown in Figure 3.2.  This thermogram 

shows two characteristic peaks: a minor peak at 32-33°C and a major peak at 38-40°C, 

that were consistently observed in collagen denaturation.  This suggests a bimodal 

denaturation process, as recently observed by Staicu et al. under similar conditions [190].  

They propose that the initial small peak is caused by the disassembly of supramolecular 

complexes (i.e. separation of collagen molecules from one another) and the large second 

peak indicates the unfolding of each triple helical molecule into a random coil formation. 

Table 3.1 shows that scCO2 treatment does not have a significant impact on the 

height or temperature of either peak, indicating that the thermal stability of collagen is  

not substantially altered by scCO2 treatment.  This result indicates thermal compatibility, 

likely because the uncharged and nonpolar scCO2 does not disrupt the polar and charged 

amino acids in collagen.  However, Table 3.1 shows that liquid CO2 treatment 

significantly reduces the height of both peaks, and sometimes the smaller peak is not 

even observed.  This indicates considerable denaturation during treatment. 
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Figure 3.2 – Sample Thermogram of Collagen DSC: Thermogram of native collagen in 

4% acetic acid, 0.25 mg/mL.  The smaller initial peak represents the unfolding of 

supramolecular complexes, while the larger peak is the unfolding of the collagen 

molecule itself. 
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Table 3.1 – Collagen DSC – Native Collagen 

Treatment Minor T (°C) Minor Ht. 

(uW) 

Major T (°C) Major Ht. 

(uW) 

Native 33.1 ± 1.0 8.6 ± 2.5 38.5 ± 0.5 58.6 ± 12.0 

Supercritical 33.3 ± 0.3 10.4 ± 3.8 38.3 ± 0.6 47.5 ± 9.7 

Liquid 34.2^ ± N/A 3.9^ ± N/A 39.1 ± 0.3 10.5** ± 6.6 

 

^Peak only observed once; the height value of zero was used for other runs. 

** p < 0.01 compared to native collagen  
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This finding is surprising, as our previous work with liquid CO2 at room 

temperature indicated that crystalline polymers tend to be compatible with liquid CO2 

[116].  Furthermore, the liquid CO2 treatment was done at milder conditions than scCO2.   

However, the temperature in this work was 10-15°C below room temperature.  At first 

glance, a temperature difference of only 10-20°C seems unlikely to cause such a drastic 

change in thermal stability, but further consideration of collagen chemistry reveals 

several consequences of the temperature difference.  Temperature is the most notable 

factor in protein denaturation, but pH and salt concentration also play a role [191, 192].  

Since water is present internally within the collagen structure [179, 193], CO2 forms 

carbonic acid in the presence of water, causing a significant pH reduction.  Recent studies 

have shown that collagen is stable at mild pH but denatures readily at high acidity or 

basicity [194].  pH depression by CO2 may be exacerbated at lower temperatures because 

the solubility of CO2 in water is inversely proportional with temperature. 

Although protein denaturing by heating is done routinely, a similar phenomenon 

by cooling, called cold denaturation, also exists for many proteins [195].  Other studies 

have shown that long-term freezing of collagen negatively affects its thermal properties, 

including reducing its heat denaturing temperature by over a degree Celsius [196].  CO2 

density also increases at lower temperatures.  However, the liquid CO2 temperature used 

in this study was above freezing, and cold denaturation is more commonly observed in 

globular proteins [197], so internal pH drop is more likely to be the driving force of the 

observed denaturation during liquid CO2 treatment.   

It was hypothesized that repeating liquid CO2 treatment at a higher temperature 

would significantly reduce or even eliminate collagen denaturation, and preliminary 
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research indicates that this is the case.  DSC of a collagen fiber treated with liquid CO2 at 

25°C indicated much less denaturation (see Appendix A).  If raising the process 

temperature is not feasible, a basic additive, such as ammonia, could also counteract the 

pH drop caused by the interaction of liquid CO2 and water. 

 

3.3.2 Molecular Weight  

The effect of CO2 treatment on the molecular weight of collagen was determined 

by gel electrophoresis.  Native type 1 collagen would be expected to show a doublet at 

139 and 129 kDa, indicating the presence of the α-1 and α-2 helices, and possibly to show 

a double helix β-band at 258-288 kDa  [198].  On Figure 3.3, a band between 150 and 

125 kDa is clearly observed for untreated collagen and both CO2 treatments.  There is no  

Clear band visible above 250 kDa, which indicates that the collagen is broken down into 

individual α-helices during the preparation step.  Comparison of lanes 3, 5, and 7 to the 

large smear (rather than bands) in lane 9 shows that neither CO2 treatment completely 

denatures the protein. 

Though an α-helix band is clearly observed in Figure 3.3, it is unclear in the 

figure if there is one band or two in the 130-140 kDa region.  Magnified images of lane 7 

are shown in Figure 3.4.  A doublet is somewhat observable in image (a), but becomes  

very clear upon image enhancement in image (b).  As expected, the first band, for the α-1 

helix at 139 kDa, is about twice the size of the α-2 band at 129 kDa.  Overall, the SDS-

PAGE results show that both supercritical and liquid CO2 treatment do not have a 

significant effect on the molecular weight distribution of collagen. 
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Figure 3.3 – SDS-PAGE Gel Stained with Coomassie Blue: Lane 1 – Protein Standards; 

Lane 3 – Untreated Collagen; Lane 5 – Supercritical CO2 Treatment; Lane 7 – Liquid 

CO2 Treatment; Lane 9 – Thermally-Denatured Collagen 
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Figure 3.4 – SDS-PAGE Doublet Close-Up: (a) Original photograph, (b) Enhanced 

photograph.  N is native collagen, L is liquid CO2 treatment, and SC is scCO2 treatment.  

Image (b) was enhanced by adjusting the contrast and color saturation levels in Adobe 

Photoshop.  Bands are observed for both the α-1 and α-2 helix present in type I collagen 

in native collagen and both CO2 treatments.  The α-1 band is roughly twice as large 

because type I collagen contains two α-1 helices and one α-2 helix. 
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3.3.3 Secondary Structure 

 The effects of CO2 treatment on the secondary structure of collagen were 

determined using circular dichroism (CD).  Normally, triple-helical collagen has a CD 

spectrum with a positive peak at 225 nm and a negative peak at 205 nm [183].  As 

collagen denatures, it shifts from helix conformation to a random coil.  The same four 

treatments used for SDS-PAGE were analyzed by CD in the ultraviolet range (190-250 

nm); CD spectra for each treatment at the 15 μg/mL concentration are shown in Figure 

3.5 (spectra at other concentrations are available in Appendix B).  For native collagen 

(blue), a positive peak is observed at 225 nm and a negative peak at 205 nm, as expected.  

In contrast, denatured collagen (red) is simply a flat line because denatured collagen has 

no secondary structure.  Mirroring the DSC findings, scCO2 treatment (green) has very 

little impact on the secondary structure, with very similar peak magnitudes and 

wavelengths to native collagen.  On the other hand, liquid CO2 treatment (yellow) causes 

significant changes to the CD spectrum: the magnitude of the positive peak is 

considerably less, and the negative peak is barely observable.  These changes suggest a 

conformational shift toward random coil, since the random coil conformation has a 

positive peak near 210 nm that would counteract with the negative peak observed at 205 

nm in native collagen [199].  

The finding that liquid CO2 disrupts collagen secondary structure may appear to 

contradict the SDS-PAGE findings, which indicated no protein damage by liquid CO2 

treatment, but this is not the case.  CD measures secondary structure, which is clearly 

disrupted by liquid CO2 treatment.  Proteins studied in SDS-PAGE, however, must be 

linearized for bands to form; i.e. their secondary structure must be fully removed 
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Figure 3.5 – Circular Dichroism Spectra of Collagen CO2 Treatments: In untreated triple 

helical collagen, a positive peak is observed at 225 nm and a negative peak at 205 nm.  

Similar results are observed for supercritical CO2 treatment, but response is dampened for 

liquid CO2 treatment.  Denatured collagen shows no peaks, as expected. 
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 (this is done with βME and the 10-minute heating step; see section 3.2.5).  Therefore, 

one can conclude that liquid CO2 treatment partially denatures collagen – i.e. it is 

disruptive enough to affect the secondary structure, but not enough to affect the primary 

structure. 

It is worth noting the large amount of CD scatter observed at wavelengths below 

200 nm.  This is a common problem with some CD buffer solutions, where a 

considerable amount of noise is encountered in the high frequency part of the ultraviolet 

region (usually between 180 and 200 nm).  Several attempts were made to reduce this 

noise, but they were unsuccessful in reducing the noise while still maintaining sharp 

peaks.  Fortunately, no characteristic collagen CD peaks are found in the low wavelength 

region for either the triple helix or random coil conformations, so the noise did not 

meaningfully affect data collection or results interpretation. 

  

3.4 Conclusions  

In this chapter, the effects of supercritical and liquid CO2 treatment on the 

chemical and physical properties of type I collagen fibers were investigated.  Analysis by 

differential scanning calorimetry found minimal alteration of collagen thermal stability 

by scCO2 treatment, but significant denaturation from liquid CO2 treatment.  This 

surprising result may be attributable to internal pH drop caused by the low temperature 

used during this treatment; preliminary data indicate better compatibility at higher 

temperatures. 

SDS-PAGE showed no significant changes in collagen molecular weight during 

either CO2 treatment, as the characteristic α-helix doublet was observed in both.  CD 
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spectra of scCO2-treated collagen showed only a small effect on peak height and no 

change in peak wavelength, but liquid CO2 treatment caused a significant reduction in 

peak height and also shifted the negative peak toward a higher wavelength, indicating a 

transition from helical conformation to random coil structure.  Again, this finding may be 

caused by the treatment temperature used. 

In summary, it can be concluded from this study that scCO2 and type I collagen 

are chemically compatible, and it would be sensible to consider utilization of scCO2 in 

more practical collagen processing applications, such as sterilization, scaffold production, 

and extraction of residual crosslinking agents.  Liquid CO2 partially denatures collagen at 

the conditions studied, though preliminary data indicates that increasing the temperature 

could improve compatibility.  Since the supercritical phase is generally preferred because 

of its superior transport properties, only scCO2 was studied for the remainder of this 

dissertation. 
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Chapter 4  Extracting Glutaraldehyde from Crosslinked Collagen with scCO2

4.1  Introduction 

Since the emergence of TE as a scientific field, collagen has been utilized in TE 

scaffolds [180].  Collagen is found ubiquitously throughout the human body and has very 

low immunogenicity and antigenicity.  Collagen can be molded into scaffolds of various 

sizes and morphologies in both the solid and liquid/gel state; some examples of this 

include electrospun scaffolds [200], lyophilized collagen [130], and collagen hydrogels 

[198].  These methods allow collagen scaffolds to be tailored to have a desired porosity 

and permeability.  Furthermore, collagen has been proven influential in orchestrating the 

adhesion, migration, and proliferation of cells during tissue growth [126].  Collagen 

scaffolds also evoke an anti-inflammatory wound healing immune response [4]. 

However, collagen does have one major weakness as a TE scaffold material: its 

lack of mechanical strength.  Because of this deficiency, untreated collagen is rarely used 

as the sole material in fabrication of TE scaffolds.  There are two approaches commonly 

utilized to circumvent this problem.  The first is blending collagen with another 

biomaterial [121].  A number of biomaterials have been used for this purpose, including 

natural polymers [201], synthetic polymers [142], carbon nanotubes [145], and ceramics 

[144].  This approach increases the mechanical strength, but risks increasing 

immunogenicity.  It also increases the complexity of scaffold design and post-fabrication 

processing steps, such as sterilization and removal of residuals. 
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The other approach is crosslinking collagen to augment its mechanical strength.  

Crosslinks are covalent bonds formed between adjacent polymer chains that increase the 

mechanical strength of a polymer.  Such bonding can be photo-activated using ultraviolet 

(UV) irradiation, but UV crosslinking can denature proteins and is ineffective for thick 

samples because of its non-uniform penetration depth [135].  Chemical crosslinking is 

often more effective; in particular, glutaraldehyde is a reagent that has been shown to 

achieve a high degree of crosslinking at relatively low concentrations [202].  However, 

residual glutaraldehyde is extremely cytotoxic.  Speer’s group showed that as little as 3 

ppm of glutaraldehyde in cell media can kill over 99% of fibroblasts [137], and 

glutaraldehyde is also a known carcinogen [203].  Crosslinked TE structures often must 

undergo a rigorous heating process to remove residual reagents; this can be unsuitable for 

the physical and biochemical properties of collagen scaffolds [204].  Recently, more 

attention has been given to alternative crosslinking agents, such as EDC [138], genipin 

[139], and riboflavin [140], but these are relatively unexplored and may be less potent 

than glutaraldehyde [141]. 

If residual glutaraldehyde were removed using a faster and less disruptive method, 

it could significantly benefit collagen TE research.  The objective of this study was to 

develop a process to extract residual glutaraldehyde from crosslinked collagen films 

using scCO2.  scCO2 is formed when pure CO2 is heated and pressurized above the 

critical conditions of 31.1°C and 7.38 MPa.  These relatively mild conditions are suitable 

for processing biomaterials.  In particular, scCO2 has been used to extract numerous 

biomolecules, including essential oils [26], caffeine [69], and fatty acids [205].  It has 
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also been used in several other biomedical applications, including critical point drying 

[57], pasteurization [23, 93], and sterilization [30-32, 34-37]. 

Recently, Reverchon’s group used scCO2 with an ethanol additive to extract 

residual glutaraldehyde from crosslinked chitosan aerogels [41].  They found that an 8 

hour CO2 treatment could reduce glutaraldehyde levels below 1 ppm, and in some cases 

even below 0.1 ppm.  This is a critical finding for gel TE, as the standard heating process 

to remove residual glutaraldehyde would exceed the glass transition temperature of the 

biomaterial and cause collapse of the aerogel structure.  An analogous finding for 

collagen TE would be of similar benefit. 

Additionally, it was desired to quantify any possible effects or alterations to the 

chemical and physical properties of crosslinked collagen caused by scCO2 treatment.  

This was accomplished by comparing the thermal stability and mechanical properties of 

treated films to untreated films.  Maintaining the thermal and mechanical properties of 

collagen during glutaraldehyde extraction is important for preserving scaffold 

functionality in downstream applications. 

 

4.2 Materials and Methods   

4.2.1 Fabrication of Collagen Films 

 A 1% (w/v) type I collagen dispersion was obtained from the Yost lab; it was 

prepared by their group as described previously [4].  Collagen films were prepared 

according to the protocol of Weadock et al [206].  1 M hydrochloric acid was added to 2 

mL aliquots of collagen until reaching pH 2.  The acidified collagen was poured into a 35 

mm diameter petri dish (BD Falcon, Tewksbury, MA), covered with aluminum foil, and 
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air-dried in a chemical fume hood for 48 hr.  The resulting dried film was then carefully 

removed using fine forceps, cut into 2 cm x 0.5 cm rectangular strips, and stored at room 

temperature pending further experimentation. 

 

4.2.2 Glutaraldehyde Crosslinking 

 To crosslink the films, a 25% (v/v) glutaraldehyde solution (TCI America, 

Portland, OR) was diluted with deionized water to either 0.25% or 1%, as desired.  The 

solution was vortexed for 1 min at high speed to ensure uniform mixing, then a collagen 

film strip was carefully immersed in the solution.  The film and glutaraldehyde solution 

were left undisturbed for 72 hr, then the film was removed and washed several times with 

deionized water before further treatment. 

 

4.2.3 Glutaraldehyde Extraction using scCO2  

Crosslinked collagen films were loaded into the treatment chamber of a two-

chamber scCO2 flow system, shown in Figure 4.1.  The main difference from Figure 3.1 

is the addition of a second high-pressure vessel (5).  Here, ethanol was mixed with scCO2 

until it was fully dissolved (no more than 1 min).  Then, the valve to the treatment 

chamber (6), which contains the collagen film to be treated (7), was opened, and scCO2 

flow was set to 2.5 mL/min (residence time: 4 min).  Design of the presaturation system 

is discussed in greater detail in Chapter 5.   

As done previously, the temperature was maintained at 37°C by the 

environmental chamber, (4), and the pressure of the scCO2 in the vessels was maintained 

at 20 MPa (2900 psi) using a back-pressure regulator (10).  A manual hand pump (8) was  
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Figure 4.1 – Glutaraldehyde Extraction Schematic: 1 – CO2 Supply; 2 – High Pressure 

Valve; 3 – Syringe Pump; 4 – Environmental Chamber; 5 – Presaturation Chamber and 

Stirring Bar (ethanol additive); 6 – Treatment Chamber; 7 – Collagen Film; 8 – CO2 Hand 

Pump; 9 – Pressure Gauge; 10 – Back Pressure Regulator; 11 – Emergency Vent 
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used to depressurize the system at a rate of 0.34 MPa/min (50 psi/min).  Valves and 

fittings rated for pressures up to 68.9 MPa (2) were used throughout the system. 

As a control, glutaraldehyde was separately removed from crosslinked collagen films by 

heat treatment for 12 hr at 120°C using a vacuum oven according to the protocol of Yang 

et al [204]. 

 

4.2.4 Measurement of Residual Glutaraldehyde 

 The concentration of residual glutaraldehyde was measured using a 

spectrophotometric method first performed by Bigi et al. [207].  Crosslinked collagen 

films were placed in a quartz cuvette (VWR, Radnor, PA) before and after scCO2 

treatment.  The cuvette contained 3 mL phosphate buffered saline (PBS) with 0.1 M 

glycine.  The presence of glycine has been shown to counteract the gradual pH drop 

normally observed with proteins in PBS solutions. 

The cuvette was immediately placed into a UV/visible spectrophotometer 

(Beckman-Coulter DU 730, Brea, CA), which was utilized in Kinetic/Time mode to 

measure the optical density of the solution at 260 nm every 1 min.  Typically, 

glutaraldehyde was released from the film over the course of 2-4 hr.  Separately, a 

standard curve was generated for known concentrations of glutaraldehyde in the 

PBS/glycine solution; the standard curve was used to determine the unknown 

concentration of residual glutaraldehyde in each collagen film. 
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4.2.5 Differential Scanning Calorimetry 

 Crosslinked collagen films were studied before and after scCO2 treatment using 

DSC to analyze their thermal stability.  Films were dissolved in 4% acetic acid overnight 

under gentle stirring.  Collagen solutions were next degassed for 15 min using a vacuum 

desiccator and magnetic stirring bar.  The degassed collagen solution was pipetted into to 

the sample port of the DSC instrument after performing a baseline scan with acetic acid 

as the reference solution.  The instrument was pressurized to 3 atm (gauge pressure) and 

the sample was heated from 10 to 90°C at 2°C/min.  Data were obtained using 

instrument-associated RunDSC and NanoAnalyze software and then were exported to 

Excel for further analysis. 

 

4.2.6 Tensile Testing 

 A uniaxial tensile test to failure was used to analyze the modulus of elasticity 

(MOE) and ultimate tensile strength (UTS) of collagen films before and after scCO2 

treatment.  Collagen films were loaded onto a Bose 3230 Electroforce Biomechanical 

Tester (Bose Corp., Farmingham, MA) and one end was stretched at a rate of 0.01 mm/s 

until failure.  The accompanying Wintest 4.1 software was used to control the experiment 

and collect data, which was exported to Excel for further analysis. 

 

4.2.7 Statistical Analysis 

Graphs and tables display the mean value plus or minus one standard deviation.  

A Student’s t-test was used to determine statistical differences between groups.  95% 

confidence (p < 0.05, *) was considered statistically significant, while 99% confidence 
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was considered highly statistically significant (p < 0.01, **).  All experiments were 

performed in triplicate (n = 3) unless stated otherwise. 

 

4.3 Results and Discussion 

 Collagen films were prepared, crosslinked with glutaraldehyde, then either used 

as controls or treated with scCO2 for 1 hour to extract unreacted glutaraldehyde.  Treated 

films were examined for extent of glutaraldehyde removal and for any changes in their 

physical properties effected by scCO2 treatment. 

 

4.3.1 Glutaraldehyde Extraction 

 Figure 4.2 shows an example of transient glutaraldehyde release from collagen 

films before and after scCO2 treatment.  The concentration of glutaraldehyde plateaus 

after all residual glutaraldehyde has leached into the glycine solution.  In this example, it 

is clear that the glutaraldehyde concentration is far greater than the cytotoxic level prior 

to scCO2 treatment, but well below it afterwards.  Similar behavior was observed in all 

other runs.  Glutaraldehyde extraction with scCO2 was effective at both crosslinking 

concentrations, 0.25% and 1%, as seen in Figure 4.3.  Two key findings are noted.  First, 

and most importantly, scCO2/ethanol treatment removes over 95% of residual 

glutaraldehyde at both crosslinking concentrations.  The residual glutaraldehyde 

concentration after scCO2 treatment is below the reported cytotoxic threshold of 3 ppm in 

our experiments, though it should be noted that the magnitude of residual glutaraldehyde 

concentration is dependent on the mass of collagen and volume of PBS/glycine solution  
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Figure 4.2 – Example Glutaraldehyde Release Curves: Glutaraldehyde leaches from the 

collagen films at a linear rate until the concentration plateaus.  Far less glutaraldehyde is 

present in the collagen film after scCO2 treatment. 
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Figure 4.3 – Quantitation of Residual Glutaraldehyde: At both concentrations used, 

scCO2 extraction of glutaraldehyde reduces the residual concentration by over 95%. 
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used in the experiment.  Another interesting observation is that the similarity between the 

results observed for 0.25% and 1% glutaraldehyde crosslinking solutions.   

One would intuitively expect larger residual glutaraldehyde concentration when a 

larger concentration is used during crosslinking, but there are several possible  

explanations for this result.  For example, there may be surface porosity and/or mass 

transfer limitations.  Also, the results may be related to extent of crosslinking.  It is 

possible that all of the glutaraldehyde reacts for both solutions, i.e. neither 0.25% nor 1% 

glutaraldehyde is a high enough concentration to fully crosslink collagen.  Conversely, 

the opposite could also be true – the number of amine crosslinking reaction sites on 

collagen are limited [208], so if 0.25% glutaraldehyde fully crosslinks collagen, then 

increasing the concentration to 1% will have minimal effect.   

In their similar study, Baldino et al. found that increasing the mass of 

glutaraldehyde used during crosslinking led to more residual glutaraldehyde in the matrix 

after scCO2 treatment (pre-treatment glutaraldehyde concentrations were not reported) 

[41].  However, this increase was not significant until an extreme excess of 

glutaraldehyde was used, which could indicate incomplete crosslinking at higher 

glutaraldehyde concentrations or complete crosslinking even at low glutaraldehyde 

concentrations.  The validity of these theories, particularly those regarding reaction sites 

and extent of crosslinking, are elucidated by studying the physical properties of the 

collagen films after scCO2 treatment, especially DSC.  

 Another result worth further consideration is the rapid glutaraldehyde leaching 

observed in this work.  For example, Figure 4.2 depicts a trial where most of the residual 

glutaraldehyde leaches into the PBS/glycine solution in 60 minutes.  This calls into 
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question using scCO2 at all when glutaraldehyde can be removed just as quickly by the 

leaching method.  However, the duration of the leaching process is abnormally fast 

compared to other accounts.  Glutaraldehyde leaching is very slow when the residual 

concentration is below 1 ppm, sometimes taking 24 hr or longer [41, 207].  Such low 

glutaraldehyde concentrations are likely necessary to avoid cytotoxicity, as media 

concentrations above 3 ppm inhibit 99% of cells and concentrations as low as 0.5 ppm 

cause some amount of inhibition [137].  Also, the effects of exposing collagen to PBS 

and glycine are not confirmed to be benign; salt in particular can affect the thermal 

stability of collagen [192], whereas scCO2 is non-toxic and highly inert.  Finally, leaching 

of other crosslinking agents, such as genipin or riboflavin, would be even slower since 

they are larger molecules than glutaraldehyde.  For all these reasons, we believe scCO2 

has future viability as a crosslinking aid. 

 

4.3.2 Physical Property Analysis 

 The effect of scCO2 treatment on collagen film properties was studied using two 

analytical methods: DSC to assess changes in thermal stability, and uniaxial tensile 

testing to measure alterations in stiffness and tensile strength. 

The thermal stability of crosslinked collagen films was studied using DSC; peak 

heights and denaturing temperatures of crosslinked collagen in 4% acetic acid are listed 

in Table 4.1.  Compared to native collagen, crosslinked collagen has a much higher 

denaturation temperature and a reduced denaturing peak height.  The crosslinking process 

increases the thermal stability of the protein by introducing covalent bonds, thereby 

requiring a higher temperature to denature the protein.  However, the peak height is 
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reduced because breaking covalent crosslinks is an exothermic process, while protein 

unfolding is endothermic [202].  Table 4.1 reveals that scCO2 treatment does not affect 

the thermal stability of crosslinked collagen, but heat treatment reduces both peak height 

and denaturation temperature, the former being statistically significant.  It is noteworthy 

that after crosslinking, thermal collagen denaturation is no longer bimodal and only one 

peak is observed.  This is observed because in the crosslinked state, the collagen 

molecules do not separate from each another before unfolding because they are 

covalently bonded by the crosslinks, instead of being associated by electrostatic forces 

only [209].   

Uniaxial tensile testing was performed to determine the effects of crosslinking 

and scCO2 treatment on the mechanical properties of collagen films.  The MOE and UTS 

for each treatment can be found in Table 4.2.  Compared to native collagen, crosslinking 

caused a major increase in UTS and a lesser but still significant increase in MOE – this is 

expected and confirms the DSC findings that suggest a high extent of crosslinking. The 

more interesting result is that for scCO2-treated films, the UTS greatly increased with a 

lesser but still significant increase in MOE.  A likely explanation for this is dehydration is 

the addition of ethanol during scCO2 treatment.  Ethanol increases scCO2 polarity, 

improving solubility of the polar glutaraldehyde molecule (to our knowledge, solubility 

of glutaraldehyde in pure scCO2 is not documented, but chemistry of similar molecules 

suggests it is minimal).  Though ethanol improves glutaraldehyde solubility, it is also 

known to substantially increase extraction of water from biomaterials [43, 54]. 

The implications of biomaterial dehydration vary considerably depending on the 

material treated and the application. In Baldino’s work with chitosan aerogels, for  
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Table 4.1: Collagen DSC – Crosslinked Collagen 

Film Type Denaturation Temp. (°C) Peak Height (μW) 

Native 39.1 ± 0.4 30.1 ± 8.4 

Crosslinked 63.2** ± 0.2 10.0*± 1.9 

Crosslinked + scCO2 63.3** ± 0.5 10.6* ± 2.5 

Crosslinked + 12 hr heat 59.7** ± 2.7 3.9^ ± 1.8 

* p < 0.05 compared to native collagen 

**p < 0.01 compared to native collagen 

^p < 0.05 compared to crosslinked control 
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Table 4.2: Collagen Film Tensile Test Data   

Treatment Modulus (kPa) UTS (kPa) 

Native Collagen 838 ± 141 12.0 ± 2.7 

Glut. Crosslinked (72 hr) 1113 ± 220 281** ± 30 

Glut. + SC-CO2 1584* ± 404 1067** ± 211 

Glut. + 12 hr heating N/A^ N/A^ 

* p < 0.05 compared to native 

**p < 0.01 compared to native 

^Heat-treated samples were too damaged to be tested 
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example, dehydration is probably not a major concern (no mechanical testing was 

reported in their study), since air is used to purposely remove water from the gels.  In 

other applications, such as scaffold production for long-term storage, a dry product is  

acceptable or even desirable [210].  However, in a water-rich substrate like a hydrogel, 

this drying effect is potentially a major hindrance to scaffold function and/or mechanical 

properties [168].  We have developed a method to prevent dehydration of biomaterials 

during scCO2 treatment that could be applied to this system to prevent the drying 

phenomenon [211]; this method will be discussed in considerable detail in Chapter 5 in 

the context of tissue decellularization. 

It should be noted that the mechanical test performed has some limitations.  The 

assumption of a perfectly rectangular geometry used in calculations is not fully accurate 

for treated films; the crosslinking and CO2 treatment processes can cause warping around 

the edges of the films, distorting the original shape.  Also, most tissues undergo more 

complex stressed in vivo than the static uniaxial forces applied in this work.  Blood 

vessels, for example, undergo dynamic biaxial forces in both the axial and longitudinal 

directions that vary with regular changes in blood pressure [212].  Therefore, it is 

important to assess the mechanical properties of a tissue engineering scaffold or 

biomaterial based on the intended application.   

 

4.4 Conclusions 

 In this chapter, a novel scCO2 method for extracting residual glutaraldehyde from 

crosslinked type I collagen films was presented.  In one hour of scCO2 treatment, over 

95% of unreacted glutaraldehyde was removed from the films, reducing residual 
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glutaraldehyde levels below 1 ppm.  Very similar results were obtained when 0.25% and 

1% glutaraldehyde solutions were used to crosslink the films, likely because all possible 

reaction sites were utilized at both concentrations. 

 After scCO2 treatment, DSC and tensile testing were performed to determine any 

potential effects of scCO2 treatment on the thermal and mechanical properties of the 

collagen films.  The DSC response was essentially unchanged before and after CO2 

treatment in terms of both peak height and denaturation temperature, indicating that CO2 

treatment did not disrupt the thermal stability of the films.  Tensile testing caused a 

significant increase in stiffness compared to the control and an even greater increase in 

UTS, indicative of supercritical drying caused by the ethanol additive.  However, this 

finding may not be problematic in some applications, and recent work in our lab indicates 

that biomaterial dehydration is easily preventable if desired.  The availability of a fast, 

innocuous method for removing residual glutaraldehyde from crosslinked collagen films 

overcomes a significant problem presented in the collagen TE literature.  Moving 

forward, it will be important to assess scaffold biocompatibility after scCO2 treatment 

and to determine the efficacy of this method for substrates of varying composition, 

thickness, and morphology. 
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Chapter 5  Preventing Biomaterial Dehydration with scCO2 Presaturation

5.1 Introduction 

Currently in the United States, over 120,000 people are on the national waiting 

list for an organ transplant, and that number is rapidly increasing [1].  One way to address 

this problem is the implantation of artificial tissues and organs fabricated via tissue 

engineering (TE), which would reduce wait times and alleviate the current necessity for 

tissue and organ donors.  However, tissues, organs, and their corresponding extracellular 

matrices (ECM) are highly complex and differ considerably throughout the body, making 

the development of functional, biocompatible, and sterile biomaterials very challenging.  

Potential barriers in the development of both synthetic and naturally-derived scaffolds 

include dehydration, loss of mechanical strength, chemical alteration of the matrix 

structure, and residual cytotoxicity when some detergents are used [10, 20, 213]. 

One promising but underexplored method of fabricating TE scaffolds involves 

using a SCF as a solvent.  In particular, scCO2 is promising for biomedical applications. 

It is inexpensive, readily available, chemically inert, nontoxic, and nonflammable [21].  It 

has mild critical conditions of 31.1°C and 7.4 MPa, so processing biological materials 

can take place at or near physiologic temperature (37°C).  Equipment and processes 

utilizing scCO2 have already been demonstrated in extraction of biological compounds 

[25, 26, 76-78, 80-83], decellularization [43], pasteurization [22-24, 93-95], and in 

sterilization of medical devices [33, 104], hydrogels [32], and decellularized ECM [38, 

39].  Additionally, scCO2 has been used to aid in hydrogel and polymer foaming [29, 40, 
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42], crosslinking of chitosan hydrogels [41], and several other TE scaffold fabrication 

methods [109-113]. 

Because the scCO2 platform has such versatility, it is important to explore the 

fundamentals and mechanisms behind the various processes.  One issue reported has been 

undesired dehydration of biomaterials during scCO2 treatment.  Water has a small but 

appreciable solubility in scCO2, around 0.01 mole fraction at mild supercritical 

conditions [214], which causes gradual dehydration of a material in a dynamic scCO2 

system.  For example, Sawada et al. used scCO2 to decellularize porcine aorta [43].  They 

reported DNA and cellular removal that would be adequate for the preparation of a 

naturally-derived TE scaffold, but SCF extraction of volatile substances (primarily water) 

during treatment caused embrittlement of the ECM, potentially endangering its viability 

as a scaffold.  Because hydrogels also have very high water content, understanding and 

preventing unwanted water extraction from occurring is of great importance in processing 

both synthetic and naturally-derived biomaterials with scCO2. 

 The reported extraction of volatiles during CO2 treatment is not surprising.  In 

fact, this phenomenon is well-known and is the basis of critical point drying (CPD), a 

process commonly used in tissue engineering [54] and other applications, such as 

electronics processing [55] and scanning electron microscopy [57].  The primary 

advantage of CPD over conventional evaporative drying is that CPD avoids passing 

through the two-phase vapor-liquid region of the phase diagram.  Avoiding this region is 

desirable for delicate materials that can be damaged by the surface tension that exists at 

vapor-liquid interfaces [58].  However, in this application, it is desired to avoid any kind 

of drying. 
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In this chapter, we address a challenge that will be common to any process, 

namely, the unwanted removal of water and volatiles from soft biomaterials.  We 

hypothesize that dehydration caused by scCO2 treatment can be significantly reduced or 

even eliminated by presaturating scCO2 with water prior to treatment.  Establishing 

thermodynamic equilibrium between water and scCO2 will prevent volatile substances 

from being extracted.  The objectives of this chapter are as follows: (1) to construct an 

apparatus that can presaturate scCO2 with water (i.e. achieve dynamic total solubility of 

water), and (2) to compare the amount of water extracted from two model scaffolds, a 

poly(acrylic acid-co-acrylamide) hydrogel and porcine aorta tissue, using dry and 

presaturated scCO2.  Achieving these objectives will enable further development of 

scCO2-based TE and decellularization processes. 

 

5.2 Materials and Methods 

To prevent water extraction from porcine tissue it is necessary to first achieve 

dynamic thermodynamic equilibrium (i.e. complete saturation) between CO2 and water. 

The saturated CO2 phase is subsequently suitable for treating a TE matrix. The first 

experimental objective was to ensure that the CO2 was being fully saturated during the 

mixing process.  Achieving this goal is critical before attempting to decellularize a tissue.   

 

5.2.1 Apparatus Development and Validation 

 A schematic of the presaturation apparatus used is shown in Figure 5.1. The 

essential function is to contact flowing scCO2 with liquid water in a temperature-

controlled, high pressure vessel. The vessel (5) shown in Figure 5.1 is a 25 mL high 

pressure stainless steel view cell (Waters Corp., Milford, MA).  10 mL of deionized water 
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was added to the vessel prior to the start of each run.  The vessel was continuously 

agitated using a stirrer plate and magnetic stirring bar. Temperature was maintained at 

50°C by the environmental chamber, (4).  The pressure of scCO2 in the view cell was 

maintained at 13.8 MPa (2000 psi) using a back-pressure regulator (7). 

To validate apparatus function, liquid carbon dioxide (1) was compressed in a 

chilled syringe pump (3) and slowly bubbled into the high pressure vessel.  After waiting 

15 minutes for thorough mixing, the humidified scCO2 was then flowed at various rates 

(controlled by the syringe pump) through the vessel and then a cold trap (8), which was 

maintained at -70°C using an ethanol/dry ice bath to condense dissolved water as the CO2 

exited the system. 

The mass of the cold trap was measured after each experiment using an analytical 

mass balance (Mettler Toledo, Columbus, OH) to determine the amount of water 

dissolved in the scCO2 at each flow rate.  This process is called the dynamic solubility 

method, where one stream is continuously fed into the system and the temperature and 

pressure are controlled externally and kept constant [215].  Calibration of this apparatus 

required validation that scCO2 would be saturated at sufficiently low scCO2 flow rates.  It 

is known that as the flow rate of CO2 increases in a dynamic flow apparatus, the 

residence time becomes too short for complete presaturation.  Trials were conducted at 

varying CO2 mass flow rates (1, 2.5, 5, 10, 15, and 20 mL CO2/min; n = 4 for each flow 

rate) measured at the pump inlet (0°C, 13.8 MPa; ρCO2 = 0.994 g/mL).  Treatment time 

was varied for each flow rate to ensure the same mass of scCO2 was used in each trial.  

The equilibrium solubility of water in supercritical CO2 at 50°C and 13.8 MPa (ρCO2  
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Figure 5.1 – Presaturation Test Schematic: 1 – CO2 Supply; 2 – High Pressure Valve; 3 –  

Syringe Pump; 4 – Environmental Chamber; 5 – 25 mL High Pressure Vessel; 6 – 

Pressure Gauge; 7 – Back-Pressure Regulator; 8 – Cold Trap 
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=0.665 g/mL) was found to be 0.00837 mole fraction by interpolation of known data 

[214], and compared to the mole fraction of water dissolved in CO2 at each flow rate to 

calculate an observed mole fraction, yobs. 

 

5.2.2 Biomaterial Selection and Preparation  

To further investigate presaturation, we studied both a synthetic hydrogel and a 

natural tissue, porcine aorta.  The hydrogel was poly(acrylic acid-co-acrylamide) 

potassium salt (Sigma-Aldrich, St. Louis, MO), a hydrogel used previously to establish 

the ability of dense-phase CO2 to achieve sterilization within a porous matrix [32]. 

Hydrogel powder was hydrated in excess water at 4°C for 24 hr. Excess water was 

removed from each hydrogel specimen by drying for 15 minutes under a light vacuum, 

using filter paper and a Buchner funnel to remove free saline prior to weighing and 

treatment.  Each hydrogel specimen was blotted onto a nylon filter and sealed inside the 

treatment chamber prior to exposure to scCO2.  The weight of each gel specimen was 

approximately 0.2 g. 

Porcine heart was obtained from a local slaughterhouse, and the aorta was isolated 

and surrounding fatty tissue removed.  The aortic tissue was cut into rectangles 

(approximately 3 cm x 2 cm) and stored in phosphate-buffered saline (PBS) at 4°C for up 

to 48 hours prior to use.  Each specimen was dried for 15 minutes under a light vacuum 

using filter paper and a Buchner funnel.  The treatment ratio and other conditions used 

(including temperature, pressure, and depressurization rate) were chosen to be very 

similar to the conditions used by Sawada et al. to allow for comparison [43].  Drying in a 
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vacuum oven (37°C, 38.1 cm Hg vacuum) was used as a negative control; changes in 

mass were recorded after 1, 2, 3, 6, and 24 hr. 

 

5.2.3 Treatment of Hydrated Tissue Matrices 

All biomaterial treatments were performed using the apparatus shown in Figure 

5.2.  Compared to Figure 5.1, the primary addition is a second pressure cell, the 10 mL 

treatment chamber (6), which contained the biomaterial.  Also, a manually-operated 

pump (8) (Pressure Generator 62-6-10, High Pressure Equipment Co., Erie, PA) was 

connected to the treatment chamber; the manual pump enabled a slow, controlled 

depressurization rate of 0.34 MPa/min (50 psi/min) after treatment. 

Two treatments were conducted on each biomaterial: one using dry scCO2 (no 

water in the presaturation chamber) and the other using scCO2 presaturated with water (n 

= 4 for both treatments).  All treatments were performed at 13.8 MPa (2000 psi).  The 

temperature was held constant at either 37°C (ρCO2 = 0.769 g/mL) or 50°C (ρCO2 = 0.665 

g/mL, for hydrogel only).  Four runs were made at each temperature and state of scCO2 

hydration.  All biomaterials, regardless of initial mass, were subjected to a treatment ratio 

of 60 minutes of scCO2 flow (1 mL CO2/min) per 0.2 g of gel or tissue to account for 

small differences in individual masses. 

 

5.2.4 Statistical Analysis 

Graphs of data show the mean value plus or minus one standard deviation.  A 

Student’s t-test was used to determine statistical differences between groups.  95%  
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Figure 5.2 – Hydrogel and Tissue Dehydration Test Schematic: 1 – CO2 Supply; 2 – High 

Pressure Valve; 3 – Syringe Pump; 4 – Environmental Chamber; 5 – Presaturation 

Chamber; 6 – Treatment Chamber; 7 – Sample; 8 – Hand Pump; 9 – Pressure 

Gauge; 10 – Back Pressure Regulator 
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confidence (p < 0.05, indicated by *) was considered to be statistically significant; 99% 

confidence (p < 0.01, indicated by **) was considered extremely significant. 

 

5.3 Results and Discussion 

5.3.1 Verification of Thermodynamic Equilibrium  

Validation of the apparatus was demonstrated by using a cold trap to collect 

dissolved water in the effluent stream. Validation data are presented in Figure 5.3.   

For each CO2 flow rate, an observed water mole fraction (yobs) was calculated from the 

moles of water collected in the cold trap and the moles of scCO2 pumped by the syringe 

pump.  The yobs value was compared to the known equilibrium solubility at the conditions 

studied, 0.00837 mole fraction.  Complete thermodynamic equilibrium between scCO2 

and water was achieved at flow rates of 5 mL CO2/min and below, as measured at the 

syringe pump.  At flow rates 5 mL/min and below, the effluent water mole fractions 

approach the equilibrium limit.  As the flow rate increases, the observed mole fraction 

decreases, indicating failure to equilibrate.  CO2 flow rates of 1 mL/min were used for the 

remainder of this work. 

 

5.3.2 Hydrogel Treatment  

 An important characteristic of tissues and organs is that they are highly hydrated.   

Hydrogels have long been studied as a biomaterial for the fabrication of TE scaffolds 

because of their high water content, three-dimensional structure, and their ability to be  

crosslinked and functionalized [216].  Hydrogels were chosen as a model scaffold for this 

study because they are composed primarily of water.  Treating a hydrogel with scCO2  
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Figure 5.3 – Validation of Phase Equilibrium: Complete presaturation is achieved at flow 

rates less than 5 mL/min. 
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allowed us to study the behavior of water and scCO2 in the system without potential 

interference from other compounds or variables. 

Hydrogels were treated with dry (control) and water-presaturated scCO2 at 13.8 

MPa and either 37 and 50°C.  Data from these experiments are summarized in Figure 5.4.   

At both temperatures, the average water retention was over 99% when scCO2 was 

presaturated with water, but only about 50% when dry scCO2 was used. 

Results from treating the hydrogel with scCO2 confirm the initial hypothesis.  The 

hypothesis was also observed visually, as the hydrogels appeared shrunken and partially 

collapsed after treatment with dry CO2, as shown in Figure 5.5.  The mass retention with 

dry scCO2 is slightly lower at 50°C, likely because both water vapor pressure and 

solubility in CO2 increase with temperature.  With presaturated scCO2, gel mass is 

maintained at both temperatures.   

One noticeable feature of Figure 5.4 is that the error bars for dry scCO2 treatment 

of the hydrogels are relatively large.  This is likely related to structural changes in the 

hydrogel as it dries.  Porous hydrogels like poly(acrylic acid-co-acrylamide) do not dry 

uniformly; surface tension effects change the shape of the gel as water molecules are lost 

[217].  Additionally, drying curves for this hydrogel were produced by our group in a 

previous CO2 sterilization study [32], and a period of sharp mass decline during the 

drying process was observed.  However, regardless of the specific amount of water lost 

during dry scCO2 treatment, Figure 5.4 clearly indicates that presaturating scCO2 

prevents water from being extracted from the hydrogels. 
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Figure 5.4 – scCO2 Treatment of Hydrogels at 13.8 MPa: Dry scCO2 (blue) extracted a 

substantial amount of water, while presaturated scCO2 (red) removed very little. 
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Figure 5.5 – Visual Appearance of Treated Hydrogels: (a) untreated hydrogel, (b) hydrogel 

treated with dry scCO2, (c) hydrogel treated with presaturated scCO2  
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5.3.3 Porcine Aorta Treatment 

Vacuum drying was used to produce a complete drying curve for porcine aorta 

tissue (n = 6), as shown in Figure 5.6, where dimensionless mass on the y-axis is the ratio 

of the mass measured at each time point to the original mass of the tissue.  Substantial  

water loss occurred during the first six hours, but afterward the loss of mass was 

insignificant.  Vacuum drying of the native tissue removed over half of the initial mass in 

the first hour, with a continually more gradual decline in mass over the next five hours 

until reaching slightly above 20% of the initial mass.  This is consistent with the known 

water content of porcine aorta, which is about 75% [218]. 

Results for control (dry scCO2) and presaturated scCO2 treatments of porcine 

aorta are shown in Figure 5.7.  The average mass retentions are 78.6% ± 4.6% with dry 

CO2 and 97.3% ± 1.4% with presaturated scCO2; this difference is highly significant.  It 

is evident from these results that using presaturated scCO2 considerably reduces the 

amount of mass lost during treatment, again confirming the initial hypothesis.  Visually, 

in Figure 5.8, the samples treated with presaturated scCO2 (image b) maintained the beige 

color of the native tissue (a), while specimens treated with dry scCO2 (c) experienced 

considerable darkening, particularly around the edges of the specimen.   

There is still some mass loss using presaturated scCO2, which indicates that a 

small amount of volatile substances other than water are extracted from the tissue.  This 

mass loss may be attributed to other extractable materials in the tissue.  While the aorta is 

primarily composed of water and polymeric materials like collagen and elastin, there are 

other materials present in trace amounts that may be extractable by scCO2.  Like most 

tissues, porcine aorta is known to contain lipids such as cholesterol [218]; these may  
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Figure 5.6 – Vacuum Drying of Porcine Aorta: Conditions were 37°C, 38.1 cm Hg (15 in. 

Hg) vacuum; over half the tissue mass was lost in the first hour. 
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Figure 5.7 – scCO2 Treatment of Porcine Aorta at 37°C, 13.8 MPa: Using presaturated CO2 

significantly increases mass retention. 
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Figure 5.8 – Visual Appearance of Treated Porcine Aorta. (a) untreated aorta; (b) aorta 

treated with presaturated CO2; (c) aorta treated with dry CO2; (d) vacuum-dried aorta 
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TE scaffold.  However, this has been done either with a scaffold material other than a 

decellularized tissue [41], and/or was done with the intention of long-term scaffold 

storage [120, 210].  After long-term storage, a scaffold would require rehydration before 

comprise the non-water extracted volatiles in the tissue, as scCO2 has been shown to be 

efficacious for the extraction of fatty acids and other lipids [205].  For further 

development, any additional volatiles of interest could be identified and, if maintaining  

their presence is important, removal could be prevented by pre-equilibration of scCO2, 

analogous to pre-equilibration with water.   

scCO2 treatment was found to cause less water removal than vacuum drying – 

Figure 5.9 shows where dry and presaturated scCO2 treatment lies on the vacuum drying 

curve.  Even dry scCO2 treatment causes much less drying than a vacuum treatment over 

the same time interval.  This finding was also confirmed visually, as shown in image (d) 

of Figure 5.8.  Vacuum drying caused tissues to become significantly darker in color, 

similar to dry scCO2 (image c), but also made the tissue far more brittle and translucent.   

As indicated by the square on Figure 5.9, only about one-third of the native water 

was extracted by dry CO2 treatment.  scCO2 drying is less severe than oven drying for 

two reasons.  First, the flowing scCO2 never allows equilibrium to be established between 

the fluid phase and the tissue matrix.  There is also mass transfer resistance within the 

tissue, which slows transfer of water from the tissue to the flowing scCO2.  However, 

though scCO2 drying is less pronounced than vacuum drying, unintentional water 

extraction on this level could still significantly hamper the effectiveness of a TE scaffold, 

so minimizing any drying caused by scCO2 is very important.   
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Figure 5.9 – Comparison of Vacuum Drying and scCO2 Treatment of Porcine Aorta.  The  

square represents the average tissue dehydration run with 1 hour of presaturated scCO2 

treatment (0.97), while the circle represents the average tissue dehydration run with 1 

hour of dry scCO2 treatment (0.78).  Both values are significantly larger than 1 hour of 

vacuum drying (0.46). 
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Finally, it should be noted that this work is focused on preventing unintentional 

drying during scCO2 treatment, and we are not making the claim that any scaffold dried 

during a scCO2 process or otherwise is immediately invalid or nonviable.  In fact, work 

has recently been published by other groups where scCO2 is used to intentionally dry a  

seeding and implantation.  In addition to adding another processing step, the rehydration 

process has been shown to not fully restore the original water content of the matrix 

because of irreversible changes in ECM microstructure [43, 210].   Therefore, we 

maintain that in producing a decellularized tissue for immediate use as a TE scaffold, it 

would be preferable to retain the original hydration state of the tissue after treatment. 

 

5.4 Conclusions 

A novel method for treating hydrogels, tissues, and other hydrated biomaterials 

with presaturated scCO2 is presented.  The method eliminates or heavily reduces the 

extraction of water and other volatiles that has been observed during scCO2 treatment of 

biomaterials.  In the model biomaterial studies, it was determined that dry scCO2 extracts 

considerably more water from hydrogels and tissues than presaturated scCO2.  It was also 

determined that dry scCO2 treatment removes water from tissues more slowly than 

vacuum drying, but that the amount of water extracted by dry scCO2 is still enough to 

potentially alter the properties of a hydrated TE scaffold.  Even presaturated scCO2 does 

extract some volatile components from the tissue, though further analysis is required to 

verify this. 

From these observations, we conclude that presaturation of scCO2 can be used to 

prevent undesired dehydration of biomaterials for TE applications, allowing treated 

biomaterials to be used immediately instead of requiring a rehydration step.  Having 
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overcome this obstacle, further investigation into scCO2-based fabrication of tissue 

engineering scaffolds is warranted, including decellularization of natural tissues.  

Maintaining properties such as porosity and mechanical strength will be important as this 

technology is further developed.  
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Chapter 6 Decellularization of Porcine Aorta Using Supercritical CO2

6.1 Introduction 

 Over 8,000 Americans die annually while awaiting an organ transplant, and 

currently over 120,000 Americans are on the national waiting list.  Furthermore, the 

average wait time to obtain an organ transplant is several years [1].  One way to address 

this problem is by replacing damaged tissues and organs with ones created by tissue 

engineering (TE), which could greatly reduce transplant wait times and also alleviate the 

current dearth of available organ donors.  However, tissues and organs are extraordinarily 

nuanced and complicated structures, which creates numerous criteria for developing 

effective biomimetic materials. 

Whether derived from synthetic or natural materials, TE scaffolds must be sterile, 

porous, mechanically strong, biocompatible, and of appropriate stiffness and surface 

chemistry for the application at hand [2].  Additionally, scaffold fabrication can introduce 

numerous mechanical and biochemical deficiencies, including loss of mechanical 

strength, loss of surface activity, denaturation of extracellular matrix (ECM) proteins, 

scaffold dehydration, and residually cytotoxic solvents, detergents, and/or crosslinking 

agents [47].  All of these challenges require novel and innovative TE scaffold fabrication 

methods to be continually developed and refined. 

 Additionally, TE scaffolds must direct cell proliferation and differentiation during 

tissue growth.  This is a particular strength of naturally-derived biomaterials, which have 

recently been shown to promote constructive remodeling during tissue growth [7].  In 
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particular, scaffolds prepared from decellularized tissues are uniquely able to receive and 

transmit signals to cells, an interaction called dynamic reciprocity [125].  Acellular ECM 

scaffolds have also been shown to elicit an anti-inflammatory immune response, which 

may be related to a reduced risk of immune rejection [5]. 

 Decellularization is accomplished using a variety of different techniques, 

including physical [15], chemical [219], and enzymatic treatment [163].  Treatment with 

aqueous detergents, such as sodium dodecyl sulfate (SDS) and Triton X-100, is most 

common.  Detergents lyse cell and nuclear membranes, but also denature proteins, which 

often leads to thorough cell removal but can also disrupt glycosaminoglycans (GAGs), 

growth factors, and ECM ultrastructure [13].  Because of these hazards, it has become 

common for protocols to use detergents at very low concentrations over several days or 

even weeks, minimizing ECM damage while eventually removing all cells [17].  Though 

this approach is effective, novel methods are desired to decellularize tissues as effectively 

but with shorter treatment times and without using harsh chemicals or solvents for long 

periods. 

One relatively unexplored method worthy of consideration is treatment with 

supercritical carbon dioxide (scCO2).  scCO2 is non-toxic, non-flammable, and relatively 

inert.  Its mild critical temperature (31.1°C) makes it viable physiologic temperatures, 

and it has desirable transport properties such as high diffusivity, relatively high density, 

and low viscosity [21].  scCO2 has been used extensively in TE applications that involve 

synthetic materials, particularly in polymer foaming, where CO2 is used to fabricate TE 

scaffolds from synthetic polymers [27-29].  scCO2 has also been utilized in other 

biomedical applications, including extraction of biologically-relevant molecules [25, 26], 
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critical point drying [57], pasteurization [22-24], and sterilization of biomaterials and 

medical devices [30-37]. 

A novel decellularization technique using scCO2 offers considerably faster 

decellularization, on the order of hours instead of days.  The absence of harsh chemicals 

or solvents could also mitigate damage to the ECM.  In 2008, Sawada et al. used scCO2 

to decellularize porcine aorta, but dehydration of the scaffold during treatment prevented 

further progress [43].  In Chapter 5, we presented a method, presaturation of scCO2 with 

water, that greatly reduces tissue dehydration during scCO2 treatment [211].   

Our broad aim is to develop a novel scCO2 decellularization method that also 

maintains the hydration state of the treated tissue.  The objectives of this chapter are: (1) 

to examine the extent of decellularization in porcine aorta using scCO2 with different 

additives, pretreatments, and thermodynamic conditions; and (2) to present a hybrid 

detergent/scCO2 treatment that decellularizes the tissue more quickly and as effectively 

as a standard detergent treatment.  Achieving these objectives will enable further 

development of CO2-based decellularization and TE processes. 

 

6.2 Materials and Methods 

6.2.1 Tissue Procurement and Standard Detergent Treatment 

Porcine aorta was obtained from a local abattoir, rinsed with PBS and cut into 

ring-shaped sections measuring about 1 cm in length.  Specimens were stored at -20°C 

for up to 48 hr until being treated with scCO2 or a standard SDS treatment. 

The standard SDS treatment (treatment “S”; all treatments are listed in Table 6.1) 

was performed according to the protocol of Funamoto et al [171].  Tissues were  
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Table 6.1: List of Decellularization Treatments 

Treatment Name Treatment Description 

A 1 hr scCO2 with added water 

B 1 hr scCO2 with added water & Ls-54 

C 1 hr scCO2 with added ethanol 

D 1 hr scCO2 with added water & ethanol   

S 48 hr SDS/enzymes + 24 hr PBS wash (“standard treatment”) 

H 48 hr SDS/enzymes + 1 hr scCO2 “wash” (“hybrid treatment”) 
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pretreated for 1 hr in a solution containing 0.2% (w/v) EDTA and 10 mM pH 8 Tris 

buffer to increase cell membrane permeability.  They were then decellularized for  

48 hr under light agitation in 0.1% (v/v) SDS, 10 mM Tris buffer, 0.2 mg/mL DNase I, 

and 0.02 mg/mL RNase A.  Specimens were washed with PBS several times over the 

course of 24 hr to remove cell debris and residual detergent; thus the total time required 

for decellularization was 72 hours. 

 

6.2.2 Decellularization with Supercritical CO2 

The aorta specimen (8) was loaded into the treatment chamber (7) of the scCO2 

apparatus, shown in Figure 6.1.  The apparatus contained valves and fittings rated for 

high pressures up to 68.9 MPa (2).  Liquid carbon dioxide (1) was compressed in a 

chilled syringe pump (3) and slowly bubbled into the presaturation chamber (5) to 

maximize mass transfer.  In this chamber, the additive and scCO2 were stirred vigorously 

until reaching thermodynamic equilibrium (10-15 min with water and water solutions, 1-

2 min for pure ethanol).  Four different additive solutions were used to determine whether 

aqueous additives enhanced decellularization: (treatment “A") water, (“B”) water + 

Dehypon Ls-54 surfactant (BASF America, Florham Park, NJ), (“C”) ethanol, and (“D”) 

water + ethanol.  

Once equilibrium was reached, the valve to the treatment chamber was opened, 

and scCO2 flow was programmed to 1 mL/min at the pump inlet.  During treatment, the 

environmental chamber (4) was used to maintain the temperature at either 10 or 37°C, 

and a back-pressure regulator (11) was used to keep the pressure of the scCO2 in the 

vessels constant at either 10.3 or 27.6 MPa (1500 or 4000 psi, respectively).  A manual  
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Figure 6.1 – Supercritical CO2 Decellularization Schematic: 1 – CO2 Cylinder; 2 – High 

Pressure Valve; 3 – Syringe Pump; 4 – Environmental Chamber; 5 – Presaturation 

Chamber; 6 – Stirring Bar & Additive Solution 7 – Treatment Chamber; 8 – Aorta 

Specimen; 9 – Pressure Gauge; 10 – Hand Pump; 11 – Back Pressure Regulator  
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hand pump (10) was used to depressurize the system at a rate of 0.34 MPa/min (50 

psi/min). 

 

6.2.3 Hematoxylin and Eosin (H&E) Staining 

 After treatment, tissues were fixed in 10% neutral buffered formalin for at least 24 

hr and embedded in paraffin.  Tissues were then cut into 5 μm sections using a microtome 

and deparaffinized by immersion in xylene (3 times), 100% ethanol, 95% ethanol, 80% 

ethanol, and finally water.  The tissues were stained with hematoxylin for 7 minutes, 

washed with water and ammonia, and then stained with eosin for 2 minutes before being 

dehydrated by immersion in 80% ethanol, 95% ethanol, 100% ethanol, and finally xylene 

(3 times).  A coverslip was mounted on slides, which were then viewed using a light 

microscope (Nikon E600, Tokyo, Japan) after waiting at least 24 hr for the slides to dry.   

 

6.2.4 DNA Quantitation 

 DNA was quantified using the DNAzol reagent kit (Invitrogen, Carlsbad, CA) 

according to the prescribed protocol with minor changes.  25 mg of dry aorta were flash-

frozen in liquid nitrogen and ground with a mortar and pestle.  Specimens were then 

placed in a 2 mL tissue homogenizer (VWR International, Radnor, PA) with 0.5 mL of 

DNAzol reagent and ground for 5-10 strokes or until fully dissolved.  The solution was 

then centrifuged at 10,000 x g for 10 minutes and the supernatant was recovered.  0.25 

mL of 100% ethanol was added to precipitate the DNA, which was recovered and washed 

twice with 70% ethanol for 1 min per wash.  DNA was air-dried for 5 sec and re-

dissolved in 4 mM sodium hydroxide (pH 9).  Optical density was measured at 260 nm 
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using a spectrophotometer (DU 730 model, Beckman-Coulter, Brea, CA) and the DNA 

concentration was calculated based on the absorbance measurement and initial mass of 

the tissue 

 

6.2.5 Basic Physical Characterization 

 Aorta specimens from treatments A, B, C, and D were weighed before and after 

scCO2 treatment using an analytical mass balance (Mettler Toledo, Columbus, OH) and 

compared to the mass of untreated samples and to each other.  Additionally, samples 

were photographed with a digital camera (PowerShot SX500, Canon Inc., Tokyo, Japan) 

and analyzed for changes in size, color, and overall appearance. 

 

6.2.6 Scanning Electron Microscopy (SEM) 

 After treatments C and D, samples were crosslinked with 2% glutaraldehyde (TCI 

America, Portland, OR) in 0.1 M sodium cacodylate buffer, pH 7.2 (Fisher Scientific, 

Hampton, NH), overnight at 4°C.  The sample was then washed 5 times in 0.1 M 

cacodylate buffer (pH 7.2) for 1-2 min each and then post-fixed in 1% osmium tetroxide 

(Fisher) for 1 hr at 4°C.  After secondary fixing, the specimen was washed 3 times in 

cacodylate buffer and then dehydrated in gradually increasing ethanol rinses (50%, 70%, 

80%, and 95%) for 10 min each and finally rinsed twice in 100% ethanol for 10 min per 

wash to fully dehydrate the specimen. 

 Specimens were then transferred into microporous vials, immersed in ethanol, and 

placed in a critical point dryer (CPD3 – Ladd Research Industries, Williston, VT).  

During critical point drying, the sample was submerged in liquid CO2 at 6.2 MPa (900 



www.manaraa.com

  

99 
 

psi) at 10°C and the temperature was gradually increased to 40°C, reaching the 

supercritical CO2 state.  The pressure was then decreased to atmospheric at a rate of 0.69 

MPa/min (100 psi/min).  Dried specimens were mounted on a stub and coated with gold 

twice using a sputter coater (Denton Vacuum, Moorestown, NJ) and then loaded into the 

SEM.  The SEM used was the Vega3 SBU (Tescan, Brno, Czech Republic) and was used 

at a working voltage of 10 kV. 

 

6.2.7 Hybrid SDS/CO2 Treatment 

 After analyzing the results of the above treatments, development of a hybrid 

detergent/scCO2 treatment was desired.  The hybrid treatment (“H”) involved exposure of 

tissue to the standard detergent treatment solution described in section 6.2.1, followed by 

1 hr scCO2 treatment described in section 6.2.2 in lieu of the PBS wash.  Water and 

ethanol were used together as additives.   

 

6.2.8 Mechanical Testing 

 The mechanical properties of aorta specimens from treatments S, C, and H were 

examined using a uniaxial ring test as described by Twal et al. [220].  Annular samples 

were mounted onto a Bose Electroforce 3230 Biomechanical Tester (Bose Corp., 

Farmingham, MA) using two parallel cannulas.  Specimens were subjected to three 

preconditioning cycles at a rate of 0.05 mm/s with a maximum stretch ratio of 1.2 during 

each cycle.  Samples were kept moist with PBS during preconditioning to prevent 

dehydration.  At the start of the identical fourth cycle, load and displacement data were 

recorded at a rate of 50 points/sec using the accompanying Wintest software. 
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6.2.9 Residual SDS Quantitation 

 Residual SDS from the standard and hybrid treatments was quantified using an 

SDS Detection and Estimation Kit (G Biosciences, St. Louis, MO).  The assay involved 

mixing 1 mL methylene blue dye with 0.5 mL extraction buffer and 5 μL of aqueous 

solution containing SDS, then vortexing for 30 seconds.  1 mL of chloroform was then 

added, then the mixture was vortexed again for 30 seconds.  Methylene blue is extracted 

into the organic phase if SDS is present.  After waiting 5 minutes, the bottom chloroform 

phase was sampled and optical density was measured at 600 nm.  SDS concentration was 

calculated by comparison to a standard curve. 

  

6.2.10 Statistical Analysis 

Numerical data is presented as mean values plus or minus one standard deviation.  

A Student’s t-test was used to analyze confidence in statistical differences between 

groups.  95% confidence (p < 0.05, indicated by *) was considered to be statistically 

significant, while 99% confidence (p < 0.01, **) was considered highly significant. 

 

6.3 Results and Discussion 

The objective of decellularization is to maximize removal of cells and cellular 

debris while minimizing alteration done to the ECM during treatment [13].  A successful 

decellularization protocol utilizing scCO2 would quicken the process considerably and 

could do so using a benign solvent that leaves no residual material in the matrix. 

Currently, there is no universally-accepted standard for evaluating the extent of 

decellularization.  This is not surprising, because tissues vary greatly in stiffness, cell 
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density, ECM composition, and numerous other characteristics.  Therefore, 

decellularization processes must be tailored to the specific tissue of interest [122].  

However, Badylak’s group recently proposed a list of three criteria that can adequately 

describe a decellularized tissue of any kind.  They are [12]: 

1. Lack of visible nuclear material in H&E and/or DAPI-stained sections 

2. Total amount of double-stranded DNA less than 0.05 μg/mg dry tissue 

3. No individual DNA fragment longer than 200 base pairs 

In this study, we focused on the first two criteria by performing H&E staining and DNA 

quantitation on porcine aorta after scCO2 treatment. 

Six different treatments of porcine aorta were undertaken to determine the extent 

of decellularization.  They included two controls: SDS treatment and treatment with dry 

scCO2, and treatment with presaturated scCO2 using four different additive mixtures: 

water, water/Ls-54, ethanol, and water/ethanol.  The thermodynamic conditions chosen 

were based on the factorial design and process optimization performed in Sawada’s work 

[43]. 

 

6.3.1 Extent of Decellularization with scCO2 – Histology 

 Tissue sections from each treatment were stained with hematoxylin and eosin 

(H&E) and observed under an optical microscope.  Hematoxylin is a basic, positively 

charged stain that binds to the acidic, negatively charged nuclear envelope and chromatin, 

staining it black or purple.  Eosin is an acidic, negatively charged stain that binds to 

positively-charged ECM proteins like elastin and collagen.  There were three controls in 

this study: the untreated tissue as a negative control, and the SDS-treated tissue and dry  
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Figure 6.2 – Histology of Control Specimens: H&E stained sections of untreated (a), 

SDS-treated (b), and dry scCO2-treated (c) porcine aorta.  Scale bars represent 50 μm. 
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CO2-treated tissue as positive controls.   

Sections from the tunica media of each of the controls can be seen in Figure 6.2.  

In the native tissue (image a on the figure), the elastic fibers of the ECM are parallel with 

regular spacing between them.  Round or elliptical whole smooth muscle cells are 

attached to the elastic fibers.  The middle image on the figure (b) shows the same tissue 

after treatment with SDS and a PBS wash.  Few intact cells are visible, indicating some 

degree of disruption.  However, dark, irregularly-shaped areas of cellular debris are 

observed, indicating incomplete cell removal.  Additionally, significant damage to the 

ECM fibers is evident based on their widespread breakage and deformation.  Tissue 

treated with dry (pure) scCO2 (image c) primarily has intact, undisturbed cells like the 

native tissue, though a few cells appear to be shriveled or completely removed based on 

the empty space in the micrographs.  Elastic fibers are disturbed somewhat, as some 

shrinkage is observed and the spacing between fibers is less uniform, but unlike the SDS 

treatment, the fibers are not entirely broken. 

 These findings can be explained by considering the known mechanisms of how 

detergents and supercritical fluids interact with cells and proteins.  The SDS results 

mirror the literature; it is well-known that most ionic detergents, including SDS, can 

disrupt both the cell and nuclear membranes by replacing molecules in the lipid bilayer 

via the micelle effect [13].  This effect leads to intracellular contents exiting the confines 

of the cell and leaving the black, irregular areas of cellular debris found in the 

micrographs.  However, SDS alone does not remove the cellular debris from the matrix; 

debris is usually removed by prolonged washing with a saline solution.  In this work, 

washing with PBS was done for a relatively brief 24 hr according to Funamoto’s protocol   
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[171], but Simionescu’s group and others have shown that saline rinses often require 

several days or even weeks to remove all residual cellular material and detergent from a 

decellularized blood vessel [17].  It is also well-documented that SDS denatures proteins, 

so the shrinkage and cleavage of elastic fibers is not surprising. 

 Treatment with dry scCO2 was much less disruptive to elastic fibers in the ECM 

than SDS treatment.  Though no breakage was observed, there is still a clear loss of 

uniformity in both fiber size and spacing.  This is a reasonable outcome, given that tissue 

dehydration is a known effect of dry scCO2 treatment.  However, pure scCO2 was 

ineffective at removing cells from the matrix.  This outcome matches previous 

observations by Sawada’s group that scCO2 is ineffective at cell removal without an 

additive [43].  Though there is a currently a clear lack of experimental proof, it has been 

proposed that the mechanism of scCO2 decellularization is extraction of both whole cells 

and cellular debris [12].  Because these materials are charged, dissolution in pure scCO2 

is minimal because carbon dioxide is a nonpolar molecule.  This suggests using a polar, 

CO2-soluble additive to aid in decellularization, as described in the following. 

 Four different additives were used to presaturate scCO2 in an attempt to improve 

cell removal: water (A), water + Ls-54 (B), ethanol (C), and water + ethanol (D).  H&E 

sections from treatments A and B are shown in Figure 6.3 alongside the untreated tissue.  

With regard to decellularization, there appears to be no more removal than with dry 

scCO2 (Figure 6.2c).  This is not surprising, because although water is polar, it has 

relatively low solubility in scCO2 (less than 0.01 mole fraction at the conditions studied) 

[214], meaning that the humidified CO2 still is highly nonpolar and unlikely to extract 

polar components.  Using water as an additive does appear to improve the continuity and 
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Figure 6.3 – Histology of Water and Water/Ls-54 Additives: H&E stained sections of 

untreated (a), water/scCO2-treated (b), and water/Ls-54/scCO2-treated (c) porcine aorta.  

Scale bars represent 50 μm.  
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uniformity of elastic fibers, which makes sense since the tissue is not dehydrated by this 

treatment. 

Figure 6.3 also shows the effect of adding Ls-54 to the solution to be minimal.  

Ls-54 is a non-fluorinated surfactant that has been shown to have solubility in dense-

phase CO2 and water (about 0.001-0.005 mole fraction) and to be an effective additive for 

removing bacterial endotoxin from a solid surface [103, 104].  However, it appears to be 

ineffective in enhancing decellularization, probably because its chemistry differs from 

SDS despite them both being surfactants.  Though their alkyl chain lengths are similar, 

Ls-54 contains a hydroxyl group at the end of its chain rather than the highly dissociative 

sodium ion of SDS.  Ls-54 also contains several ethoxyl and propoxyl groups, whereas 

SDS has a long, nonfunctionalized alkyl chain.  These characteristics give SDS 

amphiphilic properties that interact with the lipid bilayer in cell membranes much more 

readily than Ls-54. 

The ineffectiveness of Ls-54 could also be related to treatment temperature.  Past 

work has shown an inverse proportionality between temperature and Ls-54 solubility in 

CO2, including into the liquid CO2 phase [105].  Treatment B was also conducted at 

10°C, where CO2 is more dense and exists in the liquid phase at the treatment pressure, 

but no significant changes in extent of decellularization were observed (Figure 6.4).  

While it is generally expected that thermodynamic conditions will affect the extent of 

decellularization, it is likely that this particular treatment is so far from achieving 

complete decellularization that these effects cannot be ascertained at this magnification. 

 To further increase the polarity of the scCO2 mixture, two final treatments were 

investigated, using ethanol and ethanol/water as additive solutions.  Figure 6.5 displays  
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Figure 6.4 – Effect of Thermodynamic Conditions on Extent of Decellularization: H&E 

stained sections with water/Ls-54 as the additive solution at the three different 

thermodynamic conditions: (a) low density (10.3 MPa, 37°C), (b) medium density (27.6 

MPa, 37°C), and (c) high density (27.6 MPa, 10°C).  No significant changes in extent of 

decellularization were observed between treatments.  Scale bars represent 50 μm. 
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Figure 6.5 - Histology of Ethanol and Ethanol/Water Additives – H&E stained sections of 

untreated (a), ethanol/scCO2-treated (b), and ethanol/water/scCO2-treated (c) porcine 

aorta. Scale bars represent 50 μm.   
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H&E-stained sections from these treatments.  Treatment with ethanol alone shows 

considerable shriveling and branching of the elastic fibers, as was expected.  However, 

the use of ethanol does not aid considerably in cell removal.  Though some of the areas 

where the ECM is damaged have fewer cells, the intact elastic fibers have numerous 

intact cells attached to them.  The addition of water to the ethanol does not markedly 

change the extent of decellularization, but does significantly improve the condition of the 

elastic fibers.  This finding is expected based on Figure 6.3 and the findings of Chapter 5; 

the primary objective of using water as an additive is to prevent dehydration, not to 

remove cells.   Overall, the three treatments that included water as an additive were 

notably more effective in maintaining the alignment of the elastic fibers than ethanol 

alone.  This supports findings in our previous work, which showed that presaturating 

scCO2 with water before treatment prevents dehydration of the ECM during scCO2 

treatment.   

On the contrary, when ethanol is the only additive, shriveling and fraying of the 

ECM fibers is observed, as in Sawada’s paper.  These findings were also confirmed 

visually and by manual handling, as treatment clearly increased the rigidity of the matrix 

when water was not added, while the addition of water maintained the apparent flexibility 

and pliability of the material.  Though interesting, the prevention of tissue dehydration is 

made impractical by the lack of cell removal in any of the experiments. 

The physical properties of treatments A, B, C, and D were analyzed by mass 

measurement, photography, and scanning electron microscopy (SEM).  These findings 

were rendered impractical by the lack of decellularization, but have been preserved in 

Appendix C for the sake of completeness. 
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6.3.2 Extent of Decellularization with scCO2 – DNA Quantitation 

Ultimately, microscopy indicates only very limited cell removal with the four 

scCO2 + additive treatments, and not nearly enough to indicate decellularization.  To 

confirm visual microscopy results, we employed quantitation of DNA as a measure of 

decellularization; one of the proposed criteria for establishing decellularization is a 

double-stranded DNA concentration below 0.05 μg DNA/mg dry tissue [12].  For each 

treatment in this study, DNA was extracted and its concentration was calculated based on 

spectrophotometric absorbance readings.  Results of DNA quantitation are shown in 

Figure 6.6.  All treatments show some amount of DNA removal compared to the 

untreated tissue.  However, no treatments aside from the standard SDS method approach 

the target maximum concentration of 0.05 μg DNA/mg dry tissue.  

The results of DNA quantitation follow the histological findings, where SDS was 

required in some capacity to rupture cell membranes and attain at least an appreciable 

amount of cell removal.  The four scCO2 additives do reduce the DNA content compared 

to the untreated tissue, though none of the treatments approach complete 

decellularization, as with the H&E findings.   

The failure of the scCO2/ethanol mixture to decellularize is the most surprising 

result, given that this finding is in direct opposition to the findings of Sawada’s group and 

that the experiments and the apparatuses used in both studies are both similar.  While 

there may be unknown differences in equipment or specimens that create a significant 

difference between the studies, our results lead us to question Sawada’s findings.  When 

analyzing the results of an experiment, particularly one where mechanistic steps cannot 

be viewed in situ, it is imperative to consider the underlying mechanisms to glean 
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Figure 6.6 - DNA Quantitation: Standard & scCO2 Treatments: Values below the red line 

(0.05 μg DNA/mg dry tissue) would indicate complete decellularization.  All treatments 

showed significant DNA removal compared to the control, but none neared adequate 

decellularization except for the SDS treatment. 
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information about what is physically occurring during the experiment. 

 The limited discussion in the literature on scCO2 interaction with cell membranes 

includes two possibilities: supercritical extraction of cells or cellular debris as a primary 

mechanism, and physical dislodging of cells from the ECM caused by high pressure.  

Based on our findings, we do not expect the high pressure alone to remove cells; other 

work has been published where blood vessels have been decellularized with high 

hydrostatic pressure – pressures on the order of several hundred MPa – and cells still 

require long-term continuous washing to be removed in these applications [171].  This 

suggests renewed focus on the extraction mechanism.   

 

6.3.3 SDS/scCO2 Hybrid Treatment for Decellularization 

Earlier in this chapter, the ineffectiveness of Ls-54 surfactant in decellularization 

was discussed, possibly because of its inability to permeate the cell membrane.  We 

theorized that scCO2 in general may suffer from this same problem.  To test this 

hypothesis, a two-step hybrid SDS/CO2 decellularization treatment was investigated.  

With this treatment, tissues were treated with SDS as described in section 6.2.1, but 

without the subsequent PBS wash.  Instead, tissues were then treated (washed) for 1 hr 

with scCO2 presaturated with ethanol and water at the same thermodynamic conditions 

used previously.  

 The effect of the hybrid treatment can be seen in Figure 6.7.  Using this hybrid 

approach, there are no visible intact cells or cellular debris.  Therefore, it is likely that the 

tissue is fully decellularized.  This is an exciting and intriguing result that suggests polar   



www.manaraa.com

  

113 
 

 

Figure 6.7 – Histology of Hybrid Treatment: H&E stained sections of untreated (a), SDS-

treated (b), and SDS/scCO2-treated (c) porcine aorta.  Image (c) shows complete 

decellularization.  Scale bars represent 50 μm. 
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supercritical CO2 will extract intracellular debris, but cannot do so unless another agent is 

used to enhance membrane permeation or rupture.  Significantly, the ECM fibers appear 

to be intact and mostly undisturbed compared to the complete SDS treatment. 

Maintenance of fiber integrity may be a result of shorter exposure time to SDS; the 

scCO2/water + ethanol “wash” takes only an hour instead of the day or more required for 

PBS washing.   

DNA quantitation from the hybrid method, along with the results of the other 

treatments, can be seen in Figure 6.8.  The figure shows a level of DNA removal similar 

to the standard SDS treatment, below the threshold for decellularization with a 

concentration of 0.036 μg DNA/mg dry tissue.  This is a very exciting result, as the  

hybrid method is able to achieve the original objective: to decellularize effectively while 

avoiding dehydration of the tissue. 

It should be noted that the DNA test performed has sensitivity limitations with the 

spectrophotometer used.  Optical density near the decellularization threshold is very low, 

approaching the tolerance of the instrument.  Thus, some error may be present in the 

numerical value of the DNA concentration for SDS-containing treatments.  However, the 

histological results and statistical comparison to the other treatments confirm the efficacy 

of the method. 

To analyze the physical properties of treated aorta, uniaxial tensile testing was 

performed on samples from selected scCO2 treatments (S, C, and H).  Stress responses 

for each treatment are plotted against stretch ratio on Figure 6.9.  The bimodal stress 

response seen for each treatment in the figure is normally observed when blood vessel 

tissue is subjected to a uniaxial ring test [220, 221].  The first linear segment, observed 
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Figure 6.8 – DNA Quantitation including Hybrid Treatment: Bar chart displaying the 

DNA content of each detergent and scCO2 additive treatment.  Values below the red line 

(0.05 μg/mg) indicate adequate decellularization according to Crapo’s standard. 
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Figure 6.9 – Uniaxial Ring Test of Treated Aortas: Compared to native aortas (blue), C 

treatments (scCO2 plus ethanol, purple) have a sharper stress response while the response 

after standard SDS treatments (red) have a flatter slope.  The SDS/scCO2 hybrid 

treatments (green) are most similar to the untreated aorta.  
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for stretch ratios from about 1.0-1.08, is primarily governed by elastin.  The response of 

the second linear segment, observed for stretch ratios from 1.12-1.2, is governed by 

collagen.  Contributions to modulus of elasticity by both collagen and elastin were 

calculated for each treatment and are listed on Table 6.2.  As expected, SDS exposure 

denatures proteins and reduces stiffness, while treatment with scCO2 and ethanol causes a 

significant increase in stiffness because of dehydration.  Both of these extremes are 

mitigated by the hybrid treatment: faster treatment reduces protein denaturation and 

presaturation with water prevents matrix dehydration.  However, the hybrid treatment 

does cause a significant decrease in MOEelastin, though the decrease is less dramatic than 

that caused by the standard SDS treatment. 

 It should be noted that the uniaxial ring test has some limitations.  First, a uniaxial 

test does not accurately represent the stresses applied to blood vessels in vivo, as those  

stresses are biaxial and vary with time and blood pressure.  Additionally, blood vessels 

are highly anisotropic, so using globalized values of stretch ratio and strain can introduce 

error for specific locations on the specimen, especially those near the clamps on each end.  

A more robust approach would include biaxial testing with monitoring of local stresses 

and strains using a digital camera or other imaging device, as others have demonstrated. 

[222, 223]. 

 Removal of SDS is another consideration for scaffold viability, as cytotoxicity is 

observed for many cell types at concentrations greater than about 0.002% SDS [164].  

Residual SDS was quantified for the standard SDS treatment and the SDS/scCO2 hybrid 

treatment, Figure 6.10.  The figure shows that one hour of scCO2 treatment removes 

about as much SDS as 24 hours of washing with PBS, a significant time savings.  PBS  
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Table 6.2 – Elastic Moduli for Uniaxial Ring Tests 

Treatment MOEElastin (kPa) MOECollagen (kPa) 

Untreated 350.8 ± 18.8 717.1 ± 49.3 

SDS w/ PBS Wash (S) 106.2 ± 24.2** 306.0 ± 23.5** 

scCO2 + ethanol (C) 715.0 ± 61.9** 988.3 ± 50.6** 

SDS/scCO2 Hybrid (H) 232.4 ± 59.5* 743.4 ± 49.5 

 

*p < 0.05 compared to native aorta 

**p < 0.01 compared to native aorta 
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Figure 6.10 – SDS Quantitation Assay: SDS was quantified before and after washing 

with either PBS or scCO2.  1 hour of scCO2 treatment compares similarly to 24 hours of 

PBS washing, though neither reduces SDS concentration below the cytotoxic level of 

0.002%.   
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washes also have diminishing returns, making the wash step last several days in many 

protocols to reduce SDS below cytotoxic levels [224].  Thus, scCO2 could compare even 

more favorably over longer time periods.  This finding also indicates some solubility of 

SDS in the scCO2 treatment solution; solubility may be low because SDS a charged 

molecule, but SDS does have similar molecular weight to other molecules extracted by 

scCO2 in this dissertation, such as glutaraldehyde and Ls-54. 

 

6.4 Conclusions 

A novel scCO2 method for decellularizing porcine aorta without compromising its 

hydration state.  This method offers considerably faster decellularization of tissues 

without requiring long-term exposure to detergents or organic solvents.  As anticipated, 

nonpolar scCO2 solutions were proven ineffective for decellularizing porcine aorta by 

both histology and DNA quantitation, though presaturating scCO2 with water did better 

maintain the hydration state of the matrix, even in the presence of other additives.  More 

surprisingly, the addition of ethanol to increase scCO2 polarity did not substantially 

intensify the extent of decellularization, suggesting that scCO2 alone is unable to lyse the 

cell membrane and that the previously proposed mechanism of whole-cell extraction is 

unlikely to be valid. 

The inability of scCO2 alone is unable to disrupt cell membranes was further 

tested by the development of a hybrid decellularization protocol that utilized an SDS 

pretreatment step before washing with scCO2 and water plus ethanol as additives.  This 

treatment shows that scCO2 can extract intracellular material if the cell membrane is 

lysed beforehand.  Complete decellularization was achieved using this method, which 
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was about 24 hr faster than the standard method and maintained the hydration state of the 

native tissue.  Mechanical response of ECM decellularized by the hybrid treatment was 

similar to that of the native tissue, and most residual SDS was removed.  Still, further 

study is required to determine the capabilities and limitations of this method and to fully 

assess the effects of decellularization on the mechanical and biochemical properties of the 

matrix. 
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Chapter 7 Final Conclusions and Future Perspectives

Natural biomaterials present several advantages as TE scaffold materials.  

However, fabricating safe and effective biomimetic scaffolds challenging, and novel 

methods continue to seek improvements in functionality, safety, and fabrication 

efficiency.  Though scCO2 is commonplace in synthetic TE, its use in the fabrication of 

naturally-derived TE scaffolds, including collagen and decellularized ECM, is still in its 

infancy.  More research and development is required before the technologies presented in 

this dissertation become clinically viable or can be directly used for other practical 

applications.  In this brief chapter, some recommended avenues of future research are 

discussed. 

In Chapter 3, biochemical compatibility was demonstrated between type I 

collagen and scCO2 on both a chemical and physical level.  This discovery is a gateway 

for numerous practical applications going forward.  For example, in Chapter 4, scCO2 

was used as a crosslinking aid to remove residual glutaraldehyde from collagen films, 

avoiding the undesirable long treatment times and high temperature exposure normally 

required to remove unreacted glutaraldehyde.  Future research should include assessment 

of bioactivity, removal of other crosslinking agents, treatment of other types of collagen 

(type II, type III, etc.), and also to three-dimensional collagen constructs, as the 

morphologies explored in this dissertation, collagen fibers and films, are relatively 

simplistic.  Many other applications are possible beyond crosslinking, such as scaffold 



www.manaraa.com

  

123 
 

fabrication and sterilization with scCO2; some preliminary research exists on the latter 

[96, 225]. 

scCO2 was also explored as a novel decellularization agent.  Though previously-

reported tissue dehydration was prevented using a novel presaturation method presented  

in Chapter 5, studies in Chapter 6 showed that scCO2 alone is ineffective for 

decellularization.  Based on evidence that scCO2 is unable to penetrate the cell 

membrane, a hybrid treatment was designed using SDS to first lyse cell membranes 

followed by scCO2 extraction of intracellular debris.  Complete decellularization of 

porcine aorta was achieved with the hybrid method.  Furthermore, the hybrid method was 

faster than the standard method and did not compromise mechanical properties or deposit 

large amounts of residual SDS.   

These results are exciting, but much more study is still needed.  The logical next 

step for this work is a factorial design on the parameters of the hybrid method (e.g. SDS 

concentration and treatment time, scCO2 pressure, treatment time, and depressurization 

rate).  This would elucidate which parameters are critical for successful decellularization 

and allow the process to be optimized for faster treatment or tuning of specific scaffold 

properties.  Moving forward, it is imperative to verify scaffold bioactivity after scCO2 

treatment.  Bioactivity can be studied with an in vitro cell assay, such as Alamar blue or 

MTT.  More scaffold characterization should also be performed, including more robust 

biaxial mechanical testing and electron microscopy, which can determine the effect of 

scCO2 decellularization on surface properties and elastic fiber alignment.  Finally, 

recellularization and in vivo study using an animal model is required to determine the 
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efficacy of this decellularization method for clinical TE use.  Once the hybrid method is 

better understood, this technology can be extended to tissues other than blood vessels. 

Additionally, scCO2 should be investigated further regarding ECM sterilization.  

Xenogeneic scaffolds were recently classified as medical devices by the US Food and 

Drug Administration and therefore require terminal sterilization prior to clinical use 

[106].  Research on the effects of sterilization methods on ECM scaffolds has only 

recently begun [226], but scCO2 sterilization has been proven effective in this application 

and may offer several advantages over other methods [13, 30, 38, 39].  The ultimate prize 

for this research is an effective scCO2-based decellularization process that simultaneously 

sterilizes; such a process would greatly improve scaffold fabrication efficiency by 

eliminating an entire processing step.
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Appendix A: Supplemental DSC Data 

 

Figure A.1 – DSC Thermogram for 25°C Liquid CO2 Treatment: This response is much 

more similar to collagen after scCO2 treatment, indicating the effect of treatment 

temperature on collagen denaturation when treated with liquid CO2.  Noise in the 

thermogram resulted from the baseline scan.  
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Appendix B: Additional Circular Dichroism Data

 

Figure B.1 – CD Spectra of Native and Treated Collagen, 10 μg/mL: Positive peak 

observed at 225 nm and negative peak at 205 nm.  As the concentration increases, the 

magnitude of each peak does as well. 
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Figure B.2 – CD Spectra of Native and Treated Collagen, 20 μg/mL: No peaks are 

observed because the protein is completely unfolded and no longer has secondary 

structure. 
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Appendix C: Characterization of scCO2 -Treated Aortas

 Photographs and mass measurements were taken to analyze gross changes in 

appearance or weight caused by detergent and/or scCO2 treatment.  Photographs of aorta 

specimens after each treatment can be viewed in Figure C.1.  One can see obvious 

evidence of discoloration when dry CO2 (b) or CO2/ethanol (d) is used, which is likely a 

direct result of tissue dehydration.  When water presaturation is employed (c, e, and f), 

the color change is much less pronounced.    

 Changes in mass can are listed in Table C.1.  These results complement the 

photography and histology as well, with water presaturation treatments maintaining most 

of the mass (88-95%) while ethanol alone and dry scCO2 (to a much lesser extent) 

dehydrate the tissue.  These findings make sense based on our past work on presaturation 

and tissue dehydration: one would expect water-presaturated scCO2 to not disturb water 

in the tissues, dry scCO2 to extract to some water based on the solubility of water in 

scCO2, and an ethanol-scCO2 mixture to extract the most water because of the increased 

polarity compared to dry scCO2.   

 Scanning electron microscopy (SEM) was performed to determine if scCO2 

treatment disrupted the endothelium or three-dimensional ECM ultrastructure.  SEM was 

performed for untreated aorta and for treatments A and C.  Micrographs of the 

endothelial surface can be viewed in Figure C.2.  It is clear that treatment C, with ethanol 

alone as the additive, is more disruptive to the aorta surface, and that adding water 

prevents some of the damage.   
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Figure C.1 – Visual Appearance of Aorta Samples: (a) Untreated, (b) Dry CO2 treatment, 

(c) Water/scCO2 treatment, (d) Ethanol/scCO2 treatment, (e) Water/Ethanol/scCO2 

treatment, (f) Water/Ls-54/scCO2 treatment  
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Table C.1 – Changes in Tissue Mass During scCO2 Decellularization 

Treatment Starting Mass (mg) Final Mass (mg) % Mass Retained 

Dry CO2 372.4 271.0 72.8 

A (CO2 + Water) 250.1 238.7 95.4 

B (CO2/H2O/Ls-54) 284.6 245.1 86.1 

C (CO2 + EtOH) 273.7 84.4 30.9 

D (CO2/H2O/EtOH) 245.6 216.7 88.2 
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Figure C.2 – Endothelium SEM: SEM micrographs of the endothelium for (a) untreated 

aorta, (b) CO2/ethanol-treated aorta, and (c) CO2/ethanol/water-treated aorta. 
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 A look at the cross-sections of ethanol-treated and water/ethanol-treated aorta is 

shown in Figure C.3.  Here, it is clear that ethanol treatment disrupts the elastic fibers 

much more than when water is employed as an additive; Figure C.3a shows a tangled 

mass of different size fibers, while Figure C.3b shows a much more uniform fiber  

structure, both in terms of size and alignment; the latter is much more like the cross-

section of the native aorta [227].  This confirms histological observations (Figures 6.3 

and 6.5) that preventing dehydration by using water as an additive also helps preserve 

matrix ultrastructure.   

 It is should also be noted that it is inappropriate to look for cells in this 

circumstance because of the much larger magnification used in electron microscopy 

compared to light microscopy.  SEM is primarily concerned with surface structure and 

physical properties.  Additionally, the value of SEM is limited in this study because 

biological samples must be dehydrated before viewing for the method to work properly. 
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Figure C.3 – Cross-sectional SEM: SEM micrographs of the endothelium for (a) 

CO2/ethanol-treated aorta, and b CO2/ethanol/water-treated aorta. 
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